
z/OS

MVS Programming:
Writing Transaction Programs
for APPC/MVS

SA22-7621-01

IBM

z/OS

MVS Programming:
Writing Transaction Programs
for APPC/MVS

SA22-7621-01

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Appendix F. Notices”
on page F-1.

Second Edition, October 2001

This is a major revision of SA22-7621-00.

This edition applies to Version 1 Release 2 of z/OS (5694-A01), and to subsequent releases and modifications until
otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1991, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . xi

About This Book . xiii
Who Should Use This Book . xiii
How to Use This Book . xiii

How to Read Syntax Diagrams xiii
Where to Find More Information. xv

A Home Page for APPC and Related Networking xv
Related Books . xv
Using LookAt to look up message explanations xv
Accessing licensed books on the Web xvi

Summary of Changes . xix

Part 1. Introduction

Chapter 1. Introduction to APPC/MVS 1-1
APPC Overview . 1-1

How APPC Relates to SNA, LU 6.2, VTAM, and CPI-C 1-1
APPC Concepts and Commonly Used Terms 1-4

Programming Terms. 1-4
Network Terms. 1-6

What is APPC/MVS? . 1-9
Programming Support for APPC/MVS Callable Services 1-9
z/OS System Support. 1-14
Overview of an APPC/MVS Outbound Request 1-14
Overview of an APPC/MVS Inbound Request 1-15

Steps to Write and Install an APPC/MVS Transaction Program 1-17
Application Programming Steps 1-17
System Programming Steps 1-18

Part 2. Programming

Chapter 2. Designing and Writing an APPC/MVS Transaction Program 2-1
Benefits of APPC/MVS for Application Programs 2-1
The Elements of Conversation 2-3

Conversation States. 2-3
APPC Conversation Services 2-3
Identifying TP Partners to MVS. 2-5
Relating MVS Callable Services to CPI Communications 2-5
Flow Diagrams of Typical APPC/MVS Conversations. 2-6

TP Environment and Design Considerations 2-11
The General APPC/MVS Environment for Transaction Programs 2-11
Portability and MVS-Specific Services. 2-13
Security . 2-15
Using Basic or Mapped Conversations 2-16
Data Conversion . 2-17
Using Protected Conversations 2-17
Error Handling and Deallocation of Conversations 2-18

Chapter 3. Using CPI Communications 3-1
CPI Communications in APPC/MVS 3-1

© Copyright IBM Corp. 1991, 2001 iii

Invocation Details for CPI Communications 3-3
Interface Definition Files (IDFs) for CPI-C Calls. 3-3
Transaction Program (TP) Environment 3-3
Calling CPI Communications Routines 3-4
Parameter Descriptions . 3-5
Required Modules . 3-5
Conversation States. 3-6

Performance Considerations. 3-6

Chapter 4. The APPC/MVS Programming Interface 4-1
APPC/MVS TP Conversation Services 4-1

APPC/MVS TP Conversation States 4-1
Guide to the Conversation Services 4-3
Setting a Timeout Value for Potential Network Delays 4-13
Performance Considerations for Conversation Services 4-14

Advanced TP Services . 4-16
Extracting Detailed Scheduling and Conversation Information 4-17
Adding User Data to Accounting Records 4-17
Using TP Schedule Types 4-17
Identifying and Deallocating Conversations with Outstanding Asynchronous

Requests . 4-23
Rejecting Conversations. 4-24
Testing TPs . 4-24

System Services . 4-24
Example APPC/MVS Transaction Programs 4-24

Chapter 5. Installing and Testing Transaction Programs 5-1
Installing a TP for Testing . 5-1
Testing a TP on MVS . 5-1

Methods You Can Use to Create a Test Shell 5-2
Descriptions of APPC/MVS Test Services 5-2
Test Shell Characteristics . 5-2
Calling APPC/MVS Test Services from Your Application. 5-3
Using the TSO/E TEST Command to Test an Assembler Language TP . . . 5-5
Testing a TP under APPC/MVS Scheduling 5-6
Requesting a User-Level or Group-Level TP Profile 5-6
Requesting Access to a User-Level TP Profile 5-7
Requesting Side Information. 5-8
Enabling an LU for User-Level TP Profiles 5-8

Collecting Problem Data for Errors that Occur During Testing 5-8
Displaying APPC Activity on MVS. 5-9
Tracing APPC Conversations 5-9

Putting a Tested TP into Production 5-9
Replacing an Active TP . 5-10

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-1
Comparing the Detectives: Error_Extract, API Trace, and the TP Message Log 6-3

Clues: What Information They Collect 6-3
Modus Operandi: How They Interrogate Suspects 6-3
Fees: How to Reduce the Cost of the Investigation 6-4
The Initial Consultation: Building Your Crime Lab 6-4
The All-Star Collaboration: A Team Approach 6-5
Calls that Error_Extract or API Trace Support 6-5

Diagnosing TP Conversation Errors with the API Trace Facility 6-7
Setting Up API Trace Data Sets 6-8
Starting API Tracing Activity 6-11

iv z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Using the ATBTRACE REXX Exec 6-20
Interpreting API Trace Data 6-32

Overview of Error_Extract Service 6-38
Types of Error Information that Error_Extract Returns 6-38
Rules for Calling Error_Extract 6-39
Calling Error_Extract for an Unestablished Conversation 6-40
Using Error_Extract for Synchronous and Asynchronous Calls 6-40

Diagnosing Product-Specific Errors. 6-46

Part 3. Reference

Chapter 7. Invocation Details for APPC/MVS Callable Services 7-1
APPC/MVS Program Environment 7-1

High-Level Language Compilers 7-1
Syntax and Linkage Conventions for the Callable Services 7-2
Parameter Description for Callable Services 7-3
Required Modules . 7-4
Versions of Callable Services 7-4
Interface Definition Files (IDFs) for LU6.2 and APPC/MVS Services 7-5

Chapter 8. APPC/MVS TP Conversation Callable Services 8-1
Allocate . 8-1

Requirements . 8-2
Format . 8-2
Parameters . 8-2
Return Codes . 8-12
Restrictions . 8-15

Confirm . 8-16
Requirements . 8-16
Format . 8-16
Parameters . 8-16
Return Codes . 8-18
Restrictions . 8-24

Confirmed . 8-24
Requirements . 8-24
Format . 8-24
Parameters . 8-24
Return Codes . 8-25
Restrictions . 8-26

Deallocate . 8-26
Requirements . 8-27
Format . 8-27
Parameters . 8-27
Return Codes . 8-29
Restrictions . 8-34

Error_Extract . 8-34
Requirements . 8-35
Format . 8-35
Parameters . 8-35
Return and Reason Codes 8-38
Restrictions . 8-39

Flush . 8-39
Requirements . 8-39
Format . 8-40
Parameters . 8-40
Return Codes . 8-41

Contents v

Restrictions . 8-42
Get_Attributes . 8-42

Requirements . 8-42
Format . 8-43
Parameters . 8-43
Return Codes . 8-47
Restrictions . 8-48

Get_Conversation . 8-48
Requirements . 8-48
Format . 8-49
Parameters . 8-49
Return Codes . 8-51
Restrictions . 8-51

Get_TP_Properties. 8-52
Requirements . 8-52
Format . 8-53
Parameters . 8-53
Return Codes . 8-56
Restrictions . 8-56

Get_Type . 8-56
Requirements . 8-56
Format . 8-57
Parameters . 8-57
Return Codes . 8-58
Restrictions . 8-58

Post_on_Receipt . 8-58
Asynchronous Processing 8-59
Receiving Asynchronous Notification 8-59
Requirements . 8-60
Format . 8-60
Parameters . 8-60
Return Codes . 8-61
Restrictions . 8-62

Prepare_to_Receive . 8-62
Requirements . 8-62
Format . 8-63
Parameters . 8-63
Return Codes . 8-65
Restrictions . 8-73

Receive_Immediate . 8-73
Requirements . 8-73
Format . 8-73
Parameters . 8-73
Return Codes . 8-78
Restrictions . 8-85

Receive_and_Wait . 8-85
Requirements . 8-86
Format . 8-86
Parameters . 8-86
Return Codes . 8-91
Restrictions . 8-101

Request_to_Send. 8-101
Requirements . 8-101
Format. 8-101
Parameters . 8-101
Return Codes . 8-102

vi z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Restrictions . 8-103
Send_Data . 8-103

Requirements . 8-103
Format. 8-104
Parameters . 8-104
Return Codes . 8-107
Restrictions . 8-113

Send_Error . 8-113
Requirements . 8-114
Format . 8-114
Parameters . 8-114
Return Codes . 8-116
Restrictions . 8-124

Set_Syncpt_Options. 8-124
Requirements . 8-124
Format. 8-125
Parameters . 8-125
Characteristics and Restrictions 8-130

Set_TimeOut_Value . 8-131
Requirements . 8-131
Format. 8-131
Parameters . 8-131
Restrictions . 8-133

Chapter 9. APPC/MVS Advanced TP Callable Services 9-1
Advanced TP Callable Services with Multiple Call Names 9-1

Asynchronous_Manager . 9-1
Accept_Test. 9-4

Requirements . 9-4
Format . 9-4
Parameters . 9-4
Restrictions . 9-5

Cleanup_TP . 9-5
Requirements . 9-5
Format . 9-6
Parameters . 9-6
Restrictions . 9-8

Extract_Information . 9-8
Categories of Information . 9-8
Requirements . 9-9
Format . 9-10
Parameters . 9-10
Characteristics and Restrictions 9-12
Contents of the Extract Buffer. 9-13
For Summary Conversation Information (Extract Code X’0000’) 9-13
For Specific Conversation Information (Extract Code X’0001’) 9-14

Get_Transaction. 9-15
Requirements . 9-15
Format . 9-16
Parameters . 9-16
Restrictions . 9-17

Register_Test. 9-17
Requirements . 9-18
Format . 9-18
Parameters . 9-18
Restrictions . 9-19

Contents vii

Reject_Conversation . 9-20
Requirements . 9-20
Format . 9-21
Parameters . 9-21
Restrictions . 9-24

Return_Transaction . 9-24
Requirements . 9-24
Format . 9-25
Parameters . 9-25
Restrictions . 9-25

Set_Conversation_Accounting_Information 9-26
Requirements . 9-26
Format . 9-26
Parameters . 9-26
Restrictions . 9-29

Unregister_Test . 9-29
Requirements . 9-29
Format . 9-29
Parameters . 9-30
Restrictions . 9-30

Version_Service . 9-31
Example . 9-31
Requirements . 9-31
Format . 9-32
Parameters . 9-32
Restrictions . 9-32

Chapter 10. API Trace Facility Messages 10-1

Chapter 11. Error_Extract Reason Codes and Messages 11-1
Summary of Error_Extract Reason Codes 11-1
Error_Extract Error Log Information (ASB, ATB7) Messages 11-4
Error_Extract (ATB8) Messages 11-24

Part 4. Appendixes

Appendix A. Character Sets A-1

Appendix B. Explanations of Return Codes for CPI Communications
Services . B-1

Appendix C. APPC/MVS Conversation State Table C-1
Explanation of State-Table Abbreviations C-1

Conversation Characteristics () C-2
Return Code Values [] . C-3
Data_received and Status_received {, } C-4
Table Symbols. C-4

How to Use the State Table . C-5

Appendix D. Support for SNA LU 6.2 Verbs and Option Sets D-1
Mapping APPC/MVS TP Services to LU 6.2 Verbs and CPI Communications D-1
APPC/MVS Support for LU 6.2 Option Sets D-2

Flush the LU’s Send Buffer (101) D-2
Get Attributes (102) . D-2
Prepare to Receive (105). D-2
Receive Immediate (106). D-2

viii z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Sync Point Services (108) D-2
Get Conversation Type (110) D-3
Queued Allocation of a Conwinner Session (201) D-3
Immediate Allocation of a Session (203) D-3
Conversations between Programs Located at the Same LU (204) D-3
Session-Level LU-LU Verification (211). D-3
User ID Verification (212). D-3
Program Supplied User ID and Password (213) D-3
User ID Authorization (214) D-4
Profile Verification and Authorization (215) D-4
Origin LU Authorization (216) D-4
Profile Passthrough (217) D-4
Program-Supplied Profile (218) D-4
Receive Persistent Verification (220) D-4
Receive SIGNON/Change Password (222) D-5
Accounting (243) . D-5
Long Locks (244) . D-5
Test for Request-to-Send Received (245) D-5
Vote Read-Only Response to a Sync Point Operation (249) D-5
Extract Transaction and Conversation Identification Information (251) . . . D-5
CHANGE_SESSION_LIMIT Verb (501) D-5
Session-Level Mandatory Cryptography (611) D-5

Appendix E. Previous Versions of APPC/MVS Callable Services E-1
ATBALLC - Allocate (For MVS/ESA 4.2 and 4.2.2) E-1

Requirements . E-1
Format . E-2
Parameters . E-2
Restrictions . E-10

ATBALC2 - Allocate (For MVS/ESA 4.3 through OS/390 Release 7) E-10
Requirements . E-11
Format . E-11
Parameters . E-11
Return Codes . E-21
Restrictions . E-24

ATBCMCTU - Cleanup_TP (Unauthorized, for MVS/ESA 4.2) E-24
Requirements . E-25
Format . E-25
Parameters . E-25
Restrictions . E-26

ATBGETP - Get_TP_Properties E-27
Requirements . E-27
Format . E-27
Parameters . E-28
Return Codes . E-29
Restrictions . E-30

Appendix F. Notices . F-1
Programming Interface Information F-2
Trademarks . F-2

Glossary . G-1

Index . X-1

Contents ix

x z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Figures

1-1. Network Communications between LUs and Users 1-2
1-2. An SNA Network for Communications between Different Systems 1-3
1-3. CPI Communications Program Scenario . 1-4
1-4. A Session between Two LUs . 1-7
1-5. A Conversation between Two TPs . 1-7
1-6. Parallel Sessions between LUs . 1-8
1-7. Different Types of Sessions between Two LUs 1-9
1-8. Types of APPC/MVS Callable Services . 1-10
1-9. Using TP Profiles and Side Information to Find a Partner TP 1-13
1-10. Using Side Information in Client/Server Communications 1-13
1-11. APPC/MVS Communications Services (Outbound) 1-15
1-12. APPC/MVS Communication Services (Inbound) 1-16
2-1. One-Way Conversation . 2-7
2-2. Two-Way Conversation . 2-8
2-3. Example of a Confirmed Transaction . 2-9
2-4. Example of Send_Error in Receive State . 2-10
4-1. Example Use of the Conversation Correlator 4-6
4-2. Obtaining Asynchronous Notification With Post_on_Receipt 4-12
4-3. Obtaining Asynchronous Notification With Receive_and_Wait 4-13
4-4. Standard Scheduling for an APPC/MVS Transaction Program 4-18
4-5. Multi-Trans Scheduling for an APPC/MVS Transaction Program. 4-19
4-6. Phases of Multi-Trans Processing. 4-20
5-1. Use of Test Services by a TP Test Shell . 5-4
5-2. TSO/E Terminal Screen . 5-5
6-1. Sample Installation Configuration . 6-12
6-2. Timing the Start of API Tracing Activity . 6-14
6-3. Using VTAM Generic Resource Names. 6-15
6-4. Using Symbolic Destination Names . 6-16
6-5. Collecting API Trace Data for Concurrent Conversations 6-17
6-6. Collecting API Trace Data for Concurrent Conversations 6-18
6-7. Collecting API Trace Data for TPs with Multiple Levels 6-19
6-8. Example Use of Error_Extract Service, Synchronous (figure continued) 6-41
6-9. Example Use of Error_Extract Service, Synchronous. 6-42
6-10. Example Use of Error_Extract Service, Asynchronous (figure continued) 6-44
6-11. Example Use of Error_Extract Service, Asynchronous 6-45
8-1. ATBALC5 - LU 6.2 Allocate . 8-2
8-2. ATBCFM - LU 6.2 Confirm . 8-16
8-3. ATBCFMD - LU 6.2 Confirmed . 8-24
8-4. ATBDEAL - LU 6.2 Deallocate . 8-27
8-5. ATBEES3 - LU 6.2 Error_Extract . 8-35
8-6. ATBFLUS - LU 6.2 Flush . 8-40
8-7. ATBGTA2 - LU 6.2 Get Attributes . 8-43
8-8. ATBGETC - Get_Conversation . 8-49
8-9. ATBGTP4 - LU 6.2 Get_TP_Properties . 8-53
8-10. ATBGETT - LU 6.2 Get_Type . 8-57
8-11. ATBPOR2 - Post_on_Receipt . 8-60
8-12. ATBPTR - LU 6.2 Prepare_to_Receive . 8-63
8-13. ATBRCVI - LU 6.2 Receive_Immediate . 8-73
8-14. ATBRCVW - LU 6.2 Receive and Wait . 8-86
8-15. ATBRTS - LU 6.2 Request to Send. 8-101
8-16. ATBSEND - LU 6.2 Send Data . 8-104
8-17. ATBSERR - LU 6.2 Send Error . 8-114
8-18. ATBSSO4 - LU 6.2 Set_Syncpt_Options . 8-125

© Copyright IBM Corp. 1991, 2001 xi

8-19. ATBSTO5 - Set_TimeOut_Value . 8-131
9-1. ATBAMR1 - Asynchronous_Manager . 9-2
9-2. Invocation of the Accept_Test Callable Service 9-4
9-3. ATBCUC1 - Cleanup_TP (Unauthorized Version) 9-6
9-4. ATBEXAI - Information Extract Service . 9-10
9-5. ATBGTRN - Obtaining the Next Transaction 9-16
9-6. Invocation of the Register_Test Callable Service 9-18
9-7. ATBRJC2 - Reject_Conversation . 9-21
9-8. ATBRTRN - Restoring the Generic Environment 9-25
9-9. ATBSCA2 - Set_Conversation_Accounting_Information 9-26
9-10. Invocation of the Unregister_Test Callable Service 9-29
9-11. ATBVERS - Callable Service Version Service 9-32
E-1. ATBALLC - LU 6.2 Allocate . E-2
E-2. ATBALC2 - LU 6.2 Allocate . E-11
E-3. ATBCMCTU - Cleanup_TP (Unauthorized Version) E-25
E-4. ATBGETP - LU 6.2 Get_TP_Properties . E-27

xii z/OS V1R2.0 MVS Writing TPs for APPC/MVS

About This Book

APPC/MVS is an implementation of IBM’s Advanced Program-to-Program
Communication (APPC) in the MVS operating system. APPC/MVS allows MVS
application programs to communicate on a peer-to-peer basis with other application
programs on the same z/OS system, different z/OS systems, or different operating
systems including Microsoft Windows®, Sun Solaris, AIX, OS/400, OS/2, and VM in
an SNA network. These communicating programs, known as transaction programs
(TPs), together form cooperative processing applications that can exploit the
strengths of different computer architectures. This book tells how to design and
write APPC transaction programs to run on MVS.

In this book, the term APPC/MVS transaction program refers to a program
scheduled by the APPC/MVS transaction scheduler (ASCH) or to any other
program, running in an MVS address space, that uses APPC/MVS services. The
term transaction is not restricted to programs scheduled by the APPC/MVS
transaction scheduler, or to programs using APPC/MVS services. Note that
APPC/MVS transaction programs are parts of cooperative processing applications
and are distinct from, but coexistent and compatible with, CICS and IMS transaction
processing applications.

Who Should Use This Book
This book is for application programmers who design and write APPC/MVS
transaction programs.

How to Use This Book
This book is one of the set of programming books for MVS. This set describes how
to write programs in high-level languages, such as C, FORTRAN, and COBOL. For
more information about the content of this set of books, see z/OS Information
Roadmap.

How to Read Syntax Diagrams
“Chapter 6. Diagnosing Problems with APPC/MVS TPs” on page 6-1 contains
syntax diagrams for the ATBTRACE REXX exec, which allows application
programmers to control tracing activity for their TPs. Use the following instructions
to learn how to read these diagrams.

Syntax is described using the structure defined below.

v Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

The ÊÊ─── symbol indicates the beginning of a macro.

The ───Ê symbol indicates that the macro syntax is continued on the next line.

The Ê─── symbol indicates that a macro is continued from the previous line.

The ───ÊÍ symbol indicates the end of a macro.

An italicized lower-case word indicates a variable.

v Required items appear on the horizontal line (the main path).

ÊÊ KEYWORD required_item ÊÍ

© Copyright IBM Corp. 1991, 2001 xiii

v Optional items appear below the main path.

ÊÊ KEYWORD
optional_item

ÊÍ

v If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

ÊÊ KEYWORD required_choice1
required_choice2

ÊÍ

If choosing one of the items is optional, the entire stack appears below the main
path.

ÊÊ KEYWORD
optional_choice1
optional_choice2

ÊÍ

If one of the items has a default, it appears above the main path and the
overriding choices will be shown below the line.

ÊÊ KEYWORD
default

optional_choice1
optional_choice2

ÊÍ

v An arrow returning to the left above the main line indicates an item that can be
repeated indefinitely.

ÊÊ KEYWORD »

.

repeatable_item ÊÍ

A repeat arrow with a syntax note indicates how many times this can be
repeated.

ÊÊ KEYWORD »

.
(1)

repeatable_item ÊÍ

Notes:

1 Specify the <parameter> 1 to n times.

v The ─┤ parameters-n ├─ symbol indicates a labelled group that continues below
the main syntax diagram. Syntax is occasionally broken into fragments if the
inclusion of the fragment would overly complicate the main syntax diagram.

xiv z/OS V1R2.0 MVS Writing TPs for APPC/MVS

ÊÊ KEYWORD parameters-1 ÊÍ

parameters-1:

,optional_choice1
,default

,optional_choice2
,optional_choice

Where to Find More Information

A Home Page for APPC and Related Networking
For more information about APPC and related networking, come visit on the
world-wide web:
http://www.ibm.com/servers/eserver/zseries/appc/

If you are viewing this book using IBM BookManager BookServer, you can click on
the URL above to go directly to the indicated link.

Related Books
Where necessary, this book references information in other books, using the
shortened version of the book title. For complete titles and order numbers of the
books for all products that are part of z/OS, see z/OS Information Roadmap. The
following table lists the titles and order numbers of books for other IBM products.

Short Title Used in This Book Title Order Number

AS/400 APPC Programmer’s Guide AS/400 Communications: Advanced Program-to-Program
Communication Programmer’s Guide

SC41-8189

CPI-C Reference Common Programming Interface Communications
Reference

SC26-4399

OS/400 Communications
Configuration Reference

AS/400 Communications: Operating System/400
Communications Configuration Reference

SC41-0001

SNA Formats SNA Formats GA27-3136

SNA LU 6.2 Reference: Peer
Protocols

SNA Network Architecture LU 6.2 Reference: Peer
Protocols

SC31-6808

SNA Network Product Formats SNA Network Product Formats LY43-0081

SNA Technical Overview SNA Technical Overview GC30-3073

VM/ESA Connectivity Planning,
Administration, and Operation

VM/ESA Connectivity Planning, Administration, and
Operation

SC24-5448

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages and system abends.

Using LookAt to find information is faster than a conventional search because in
most cases LookAt goes directly to the message explanation.

About This Book xv

http://www.ibm.com/servers/eserver/zseries/appc/

LookAt can be accessed from the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

or from a TSO command line.

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from a disk on your z/OS Collection,
SK3T-4269, or from the LookAt Web site. To obtain the code from the LookAt Web
site, do the following:

1. Go to http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html.

2. Scroll to and click on the News and Help button.

3. Scroll to and click on the Download LookAt from the Web link.

4. Click on the ftp directory for the appropriate operating system and release.

5. Find the README file and follow its detailed instructions.

To find a message explanation from a TSO command line, simply enter: lookat
message-id as in the following example:
lookat iec192i

This results in direct access to the message explanation for message IEC192I.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

Accessing licensed books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed you will receive an e-mail
confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

xvi z/OS V1R2.0 MVS Writing TPs for APPC/MVS

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

To access the licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library .

3. Click on zSeries .

4. Click on Software .

5. Click on z/OS.

6. Access the licensed book by selecting the appropriate element.

About This Book xvii

xviii z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Summary of Changes

Summary of Changes
for SA22-7621-01
z/OS Version 1 Release 2

The book contains information previously presented in SA22-7621-00.

Changed information:

This edition includes the following changes:

v Changes to the description of the Security_pgm parameter on the Allocate call.
See 8-7, E-15, and E-6.

v Changes to message ATB80043I

This book contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

You may notice changes in the style and structure of some content in this book–for
example, headings that use uppercase for the first letter of initial words only, and
procedures that have a different look and format. The changes are ongoing
improvements to the consistency and retrievability of information in our books.

Summary of Changes
for SA22-7621-00
z/OS Version 1 Release 1

The book contains information also presented in OS/390 MVS Programming:
Writing Transaction Programs for APPC/MVS.

© Copyright IBM Corp. 1991, 2001 xix

xx z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Part 1. Introduction

© Copyright IBM Corp. 1991, 2001

z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Chapter 1. Introduction to APPC/MVS

APPC Overview . 1-1
How APPC Relates to SNA, LU 6.2, VTAM, and CPI-C 1-1

APPC Concepts and Commonly Used Terms 1-4
Programming Terms. 1-4
Network Terms. 1-6

What is APPC/MVS? . 1-9
Programming Support for APPC/MVS Callable Services 1-9

Administrative System Files 1-12
z/OS System Support. 1-14
Overview of an APPC/MVS Outbound Request 1-14
Overview of an APPC/MVS Inbound Request 1-15

Steps to Write and Install an APPC/MVS Transaction Program 1-17
Application Programming Steps 1-17
System Programming Steps 1-18

References

v SNA Network Concepts and Products

v CPI-C Reference

APPC Overview
Advanced Program-to-Program Communication (APPC) is an implementation of the
Systems Network Architecture (SNA) LU 6.2 protocol on a given system. APPC
allows interconnected systems to communicate and share the processing of
programs.

How APPC Relates to SNA, LU 6.2, VTAM, and CPI-C
Many organizations require fast and accurate exchanges of data to perform their
business functions, and they depend on communication networks to facilitate such
data exchange. To address data processing and communication needs, IBM
designed the SNA architecture as a guide for connecting products in a
communications network.

The SNA architecture provides formats and protocols that define a variety of
physical and logical SNA components. One such logical component, called the
logical unit (LU), is responsible for handling communication between end users and
provides each end user with access to the SNA network. SNA defines different
types of logical units to meet the needs of specific end users, whether the end user
is an application program, a stand-alone terminal, or a terminal and an operator. LU
6.2 is a type of logical unit that is specifically designed to handle communications
between application programs.

Figure 1-1 depicts a logical view of an SNA network that handles communication
from different users through LUs.

© Copyright IBM Corp. 1991, 2001 1-1

A typical SNA network consists of a diverse collection of processors or nodes.
Some nodes may be running the z/OS, OS/390, MVS/ESA, or VM/ESA operating
systems. Others may be AS/400 machines running OS/400 or workstations running
OS/2. Using LU 6.2, an APPC application running on one of these processors can
communicate with a remote APPC application running on another processor,
regardless of the type of processor on which the remote application is running.

A product that makes such communication possible between applications on diverse
processors is Virtual Telecommunications Access Method (VTAM). VTAM and
APPC/VTAM are implementations of SNA architecture, which direct data between
programs and devices. Figure 1-2 represents an SNA network that is directing data
among unlike systems.

user

user

user userLULU

LU

LU

SNA Network

Figure 1-1. Network Communications between LUs and Users

Introduction to APPC/MVS

1-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Before data can flow over a network, the application programs that cause the
exchange of data must request communication services. For programmers who
code these applications, it is desirable to use a consistent interface to the
communications services, regardless of the environment. To address the need for a
consistent interface across different environments, IBM introduced Common
Programming Interface Communications (CPI-C). CPI-C defines how applications
written in high-level languages can be integrated and ported across various
platforms, such as z/OS, OS/390, AS/400, VM/ESA, and workstations.

The following example (Figure 1-3) represents a network application of two
transaction programs (A and B) that use CPI Communications calls to establish the
APPC type of communication called a conversation. The conversation is directed by
the CMxxxx calls, which initialize and allocate the conversation (CMINIT and
CMALLC), send and receive data (CMSEND and CMRCV), and eventually
deallocate the conversation (CMDEAL).

The sample conversation shown could represent an application in which a
workstation program (Program A) sends input to its partner in z/OS (Program B),
which then processes and stores the input in a database.

OS/2 OS/2 OS/2 OS/400

LU

6.2

LU

6.2

LU

6.2

LU

6.2

LU

6.2

LU

6.2

LU

6.2

LU

6.2

LU

6.2

LU

6.2

OS/390

OS/390

VM

SNA

Network

Figure 1-2. An SNA Network for Communications between Different Systems

Introduction to APPC/MVS

Chapter 1. Introduction to APPC/MVS 1-3

This book tells how to write such APPC applications using both CPI
Communications and a set of callable services that is specific to APPC/MVS.

APPC Concepts and Commonly Used Terms
Before writing APPC applications, you must be familiar with certain SNA terms as
used in APPC. The APPC/MVS implementation of LU 6.2 uses the common SNA
programming and network terms that follow.

Programming Terms
Transaction Program (TP)

An application program that uses APPC communication calls is a

┌─────────┐ ┌─────────┐
│ PROGRAM │ ┌───┐ NETWORK ┌───┐ │ PROGRAM │
│ │Í─────┤LU ├─────────────────────────┤LU ├─────Ê│ │
│ A │ │A │ │B │ │ B │
└─────────┘ └───┘ └───┘ └─────────┘
(Running)

CMINIT
/* Initialize a */
/* conversation's */
/* characteristics */

/* Network gives the OK */

CMALLC
/* Allocate the */
/* conversation */

/* Session set up, if */
/* not up already */

CMSEND
/* Send data */

/* LUB starts Program B */

CMACCP
/* Accept the */
/* conversation */

/* Network gives the OK */

CMRCV
/* Receive data */

/* Network transfers the */
/* data to Program B */

CMDEAL
/* Deallocate the */
/* conversation */

CMRCV
/* Receive data (a */
/* deallocation token)*/

/* Network ends conversation*/

Figure 1-3. CPI Communications Program Scenario

Introduction to APPC/MVS

1-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

transaction program, or TP. A TP on one system can communicate with a
TP on another system to access resources on both systems. Both TPs can
be considered a single cooperative processing application that happens to
reside on two different systems.

Local TP/Partner TP
Whether a TP is a local TP or a partner TP usually depends on point of
view. From the point of view of a z/OS system, TPs residing on the system
are local TPs, and TPs on remote systems are partner TPs. However, from
the point of view of the remote system, the names are reversed: the TPs
that reside on its system are local TPs and the ones on z/OS are the
partner TPs.

A local TP can initiate communication with one or more partner TPs. The
partner might or might not reside on the local system. The TP does not
need to know whether the partner TP is on the same system or on a
remote system.

Other terms for TPs are inbound TP and outbound TP, which convey who
establishes the communication. An outbound TP is the one that starts a
conversation and an inbound TP is the one that responds. In Figure 1-3 on
page 1-4, program A is the outbound TP and program B is the inbound TP.
On z/OS, any program that calls APPC/MVS services to start a
conversation is considered an outbound TP, while an inbound TP requires
special processing by z/OS, such as scheduling and initiation, or processing
by an APPC/MVS server.

Client TP
A client transaction program is one that requests the services of an
APPC/MVS server.

APPC/MVS Server
An APPC/MVS server is an MVS application program that uses the
APPC/MVS Receive_Allocate callable service to receive allocate requests
from one or more client TPs. An APPC/MVS server can serve multiple
requestors serially or concurrently.

Conversation
The communication between TPs is called a conversation. Like a telephone
conversation, one TP calls the other and they “converse,” one TP “talking”
at a time, until one TP ends the conversation. The conversation uses
predefined communication services that are based on SNA-architected LU
6.2 services called verbs. These verb services are implemented in
APPC/MVS as callable services.

To start (allocate) a conversation, a TP issues an allocate call that contains
specific information, such as the name of the partner TP, the LU in the
network where the partner TP resides, and other network and security
information. The conversation is established when the partner TP accepts
the conversation. After a conversation is established, other calls can
transfer and receive data until a TP ends (deallocates) the conversation
with a Deallocate call.

Note: The CPI Communications protocol requires an
Initialize_Conversation (CMINIT) call before an Allocate call.

Conversation_ID
A conversation_ID is an 8-byte token that the Allocate,
Initialize_Conversation, Accept_Conversation, and Receive_Allocate calls

Introduction to APPC/MVS

Chapter 1. Introduction to APPC/MVS 1-5

return. APPC provides the conversation_ID to uniquely identify the
conversation on subsequent APPC calls.

TP_ID A TP_ID is a unique 8-byte token that APPC/MVS assigns to each instance
of an inbound transaction program. When multiple instances of a TP are
running simultaneously under APPC/MVS, they have the same TP name,
but each has a unique TP_ID. The TP_ID can be used to trace a specific
instance of a TP in the system.

Conversation State
To ensure orderly conversations and prevent both TPs from trying to send
or receive data at the same time, APPC enforces conversation states. TPs
enter specific conversation states by calling specific APPC services, and the
states determine what services the TP may call next. For example, when a
local TP allocates a conversation, the local TP is initially in send state; and
when the partner TP accepts the conversation, the partner is in receive
state. As the need arises, the local TP can call a receive service to enter
receive state and put its partner in send state, allowing the partner to send
data.

Inbound/Outbound Allocate Request
An inbound allocate request is one that starts a conversation with a TP on
z/OS; an outbound allocate request is a request to start a conversation from
a local TP on z/OS.

Inbound/Outbound Conversation
Whether a conversation is inbound or outbound, similar to whether a TP is
a local TP or a partner TP, depends on point of view. From the point of view
of an z/OS system, an inbound conversation originates from a TP that
issues an inbound allocate request for a TP on the z/OS system. An
outbound conversation originates from a TP on the z/OS system that issues
an outbound allocate request for its partner.

The significant difference between inbound and outbound conversations
generally has to do with whether the conversation will initiate work that
requires special processing by z/OS. Inbound conversations might allocate
local TPs on z/OS that need to be scheduled by a transaction scheduler, or
inbound conversations might need to be queued for an APPC/MVS server.

Network Terms
Logical Units (LUs) and LU 6.2

A logical unit is an SNA addressable unit that manages the exchange of
data and acts as an intermediary between an end user and the network.
There are different types of logical units. Some LU types support
communication between application programs and different kinds of
workstations. Other LU types support communication between two
programs. LU type 6.2 specifically supports program-to-program
communication. The actual implementation of LU 6.2 on a given system is
APPC.

Local LU/Partner LU
Whether an LU is a local LU or a partner LU depends on point of view.
From the point of view of an z/OS system, LUs defined to the z/OS system
are local LUs and LUs defined to remote systems are partner LUs.
However, from the point of view of the remote system, the names are
reversed: the LUs that are defined to its system are local LUs and the ones
on z/OS are the partner LUs.

Introduction to APPC/MVS

1-6 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

A partner LU might or might not be on the same system as the local LU.
When both LUs are on the same system, the LU through which
communication is initiated is the local LU, and the LU through which
communication is received is the partner LU.

LUs are defined to VTAM on z/OS by APPL statements in SYS1.VTAMLST.
LUs managed by APPC/MVS must also be defined by LUADD statements
in APPCPMxx parmlib members.

Sessions
A session is a logical connection that is established or bound between two
LUs of the same type. A session acts as a conduit through which data
moves between the pair of LUs.

The following figure shows how a session spans two LUs that are defined
on two different systems.

A session can support only one conversation at a time, but one session can
support many conversations in sequence. Because sessions are reused by
multiple conversations, a session is a long-lived connection compared to a
conversation.

If no session exists when a TP issues an Allocate call to start a
conversation, VTAM binds a session between the local LU and the partner
LU. After a session is bound, TPs can communicate with each other over
the session in a conversation. This sending of data between a local TP and
its partner occurs until one TP ends the conversation with a Deallocate call.

The following figure shows a single conversation between TP1 and TP2 that
is occurring over a session.

If the hardware permits and the two LUs are configured as independent
LUs, they can have multiple, concurrent sessions called parallel sessions.
When a TP from either LU issues an allocate call and sessions exist but are
being used by other conversations, an LU can request a new session
unless the defined session limit is reached.

LU
6.2

LU
6.2

session

Figure 1-4. A Session between Two LUs

TP1 TP2
LU

6.2

LU

6.2

session

conversation

Figure 1-5. A Conversation between Two TPs

Introduction to APPC/MVS

Chapter 1. Introduction to APPC/MVS 1-7

Default session limits are defined for an LU in a VTAM APPL statement.
Session-limit values can be changed by entering the VTAM MODIFY CNOS
and MODIFY DEFINE operator commands, or by modifying the VTAM
APPL definition statement and then restarting APPC/MVS. For more
information about these commands, see z/OS Communications Server:
SNA Operation.

The following figure shows three parallel sessions, each of which is carrying
a conversation.

An installation can define different types of sessions, but sessions are
ultimately defined by the LUs they span and by the session characteristics
contained in the VTAM logon mode table that is associated with the
session.

Sessions can span LUs on the same system, LUs on two like systems, and
LUs on two unlike systems that are LU 6.2 compatible. The following figure
shows three sessions bound from a single LU on SYS2. Session 1 spans
LUs on two different systems. Session 2 spans the same two systems but
is bound from a different LU on SYS1. Session 3 is bound between two
LUs on the same system.

TP1 TP2

TP3

TP5TP4

LU

6.2

LU

6.2

parallel sessions

Figure 1-6. Parallel Sessions between LUs

Introduction to APPC/MVS

1-8 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Logon Modes
A logon mode contains the parameters and protocols that determine a
session’s characteristics. Logon modes are defined in a VTAM logon mode
table, a compiled version of which exists in SYS1.VTAMLIB.

Contention
When a TP from each LU in a session simultaneously attempts to start a
conversation, the situation that results is called contention. To control which
TP can allocate the conversation, a system programmer can define for each
LU the number of sessions in which it is the contention winner and the
number of sessions in which the LU is the contention loser.

What is APPC/MVS?
APPC/MVS is a VTAM application that extends APPC support to the MVS/ESA
operating system. Although APPC/VTAM previously provided some LU 6.2
capability, APPC/MVS in cooperation with APPC/VTAM provides full LU 6.2
capability to programs running in z/OS.

The primary role of APPC/MVS is to provide a set of MVS callable services that
enable z/OS application programs to communicate with other application programs
through communication protocols provided by the SNA network.

APPC/MVS consists of programming support and z/OS system support. The
programming support consists of APPC/MVS callable services and administrative
system files for transaction programs. The z/OS system support enables programs
to use the callable services in z/OS.

Programming Support for APPC/MVS Callable Services
The APPC/MVS callable services can be divided into five types as shown in
Figure 1-8 on page 1-10. Each type is explained in more detail following the figure.

TP2

TP3

TP4

TP5

SESSION 1

SESSION 2

SESSION 3

SYS1 SYS2

TP1

TP6

LU
6.2

LU
6.2

LU
6.2

LU
6.2

Figure 1-7. Different Types of Sessions between Two LUs

Introduction to APPC/MVS

Chapter 1. Introduction to APPC/MVS 1-9

CPI Communications Calls
Common Programming Interface (CPI) Communications calls allow
high-level language programs to communicate regardless of the system on
which they are running. High-level language programs use the CPI
Communications calls to establish conversations and pass data back and
forth. When programs in z/OS use these calls, the underlying
implementation may be different from another system, but the results are
equivalent.

APPC
VTAM
APPC
VTAM

SAA CPI
Communications

Calls

SAA CPI
Communications

Calls

MVS TP
Conversation

calls
(LU 6.2)

MVS TP
Conversation

calls
(LU 6.2)

MVS Advanced
TP calls

MVS Advanced
TP callsAPPC/MVS

MVS Allocate
Queue

Service calls

MVS Allocate
Queue

Service calls

MVS System
Service calls
MVS System
Service calls

MVS

Network

Figure 1-8. Types of APPC/MVS Callable Services

Introduction to APPC/MVS

1-10 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

For example, a distributed application written in C could have part of the
application on a workstation configured for APPC and the other part on an
z/OS system running APPC/MVS. The two parts of the application could
communicate using the same CPI Communications calls, even though their
underlying environments are different. Programs that use only the CPI
Communications calls can be ported to many other systems.

The CPI Communications calls use the SNA LU 6.2 architected verbs. Each
communication call is prefixed by the letters CM; for example, CMALLC
(Allocate). For more information, including languages supported, see
“Chapter 3. Using CPI Communications” on page 3-1.

APPC/MVS TP Conversation Calls
The APPC/MVS TP conversation calls are the z/OS implementation of the
SNA LU 6.2 architected verbs and are prefixed by the letters ATB. These
conversation calls are similar to the CPI Communications calls except that
the z/OS versions take advantage of specific z/OS functions. For example,
the z/OS Send_Data call (ATBSEND) can send data residing in a data
space—something the CPI Communications Send call cannot do.

Like the CPI Communications calls, the APPC/MVS TP conversation calls
can be issued from a high-level language such as COBOL, C, PL/I,
FORTRAN, and REXX, or from assembler language programs.

Unlike the CPI Communications calls, programs issuing the z/OS calls are
not portable to other systems.

APPC/MVS TP Advanced Calls
The z/OS advanced TP calls provide unique, non-LU 6.2 architected
services to TPs running in z/OS. These calls provide specific z/OS
functions, such as the ability to extract information about communications
resources used by APPC/MVS transaction programs.

The advanced calls can be issued from high-level languages other than
REXX, and from assembler language programs.

APPC/MVS Allocate Queue Services Calls
The APPC/MVS allocate queue services calls allow a server address space
on z/OS to own and manage inbound allocate requests. Servers own
allocate requests by registering for them through the
Register_For_Allocates callable service.

Rather than directing such requests to a transaction scheduler, APPC/MVS
places allocate requests for which a server has registered on a structure
called an allocate queue. APPC/MVS queues allocate requests on a first-in,
first-out (FIFO) basis. Servers process allocate requests by selecting them
from allocate queues and performing the requested function.

The allocate queue services, which can be called from a high-level
language such as COBOL, C, PL/I, FORTRAN, and REXX, or from
assembler language programs, are described in z/OS MVS Programming:
Writing Servers for APPC/MVS.

The allocate queue services calls are not based on the LU 6.2 architecture.

APPC/MVS System Service Calls
Another type of APPC/MVS callable service provides access to system
services not normally used by transaction programs. These services are
used by other z/OS components, subsystems, and transaction schedulers,
which run in supervisor state or PSW key 0-7. The system services calls

Introduction to APPC/MVS

Chapter 1. Introduction to APPC/MVS 1-11

can be called from assembler and high-level languages other than REXX,
and are documented in z/OS MVS System Messages, Vol 3 (ASB-BPX).

The z/OS system service calls are not based on the LU 6.2 architecture.

Administrative System Files
In addition to the callable services, APPC/MVS programming support provides an
administrative utility that creates and maintains entries about TPs (TP profiles and
side information) in Virtual Storage Access Method (VSAM) key sequenced data
sets (KSDS). The entries in the VSAM system files provide information that
facilitates the flow of conversations across sessions. The two types of entries are
placed in different VSAM files—a TP profile file and side information file.

A TP profile file contains scheduling and security information for z/OS programs that
are scheduled in response to inbound allocate requests. Each LU is assigned a TP
profile file that contains information about the programs that will be associated with
that LU. When an LU receives an inbound allocate request, it locates in its TP
profile file the information necessary to retrieve and schedule the transaction
program requested. A TP profile file can be assigned to more than one LU at a
time.

Inbound allocate requests for which a server has registered are not scheduled, and
therefore do not require a TP profile.

The side information file contains the translation of symbolic destination names
used by:
v z/OS local TPs, when issuing outbound allocate requests
v APPC/MVS servers, when registering for inbound allocate requests.

If the allocate or register request does not specify a symbolic destination name,
other parameters with routing information must be specified. There can be only one
side information file per system in use at one time.

Use of TP Profile and Side Information for a Scheduled Conversation:
Figure 1-9 shows how TP profile and side information files are used by TPs on two
different systems. TP1 on the peer system allocates a conversation across the
network to TP2, using symbolic destination name TP2sym. The side information
translates TP2sym into the necessary information to send the allocate request to
the correct LU on z/OS and to the correct TP profile. The TP profile schedules TP2
to run so it can accept the allocate request with a Get_Conversation call. TP2 then
allocates a different conversation across the network to TP3 using symbolic
destination name TP3sym, and the process repeats itself going from z/OS to the
peer system.

Introduction to APPC/MVS

1-12 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Use of Side Information for an APPC/MVS Server: Figure 1-10 shows how side
information files are used by a client TP and its APPC/MVS server on two different
systems. The client TP on the peer system allocates a conversation across the
network to the server, using symbolic destination name SERVsym. The side
information on the peer system translates SERVsym into the necessary information
to send the allocate request to the server. Note that served requests do not require
the use of a TP profile.

Before APPC/MVS can queue the allocate request for the server, the server must
have previously registered for the request through the Register_For_Allocates
service. When it registered, the server specified symbolic destination name TPsym
on the call to Register_For_Allocates to own inbound conversations from the client
TP. The side information on the z/OS system translated TPsym into the necessary
information to identify allocate requests from the client TP. The server receives the
conversation through the Receive_Allocate service so that APPC communications
can ensue between client and server.

Peer System OS/390

TP1:

Allocate

TP2sym

TP3:

Get conv
TP profile

equivalent

side info

equivalent

LU LU

TP

profile

side

info

TP2:

Get conv

Allocate

TP3sym

Figure 1-9. Using TP Profiles and Side Information to Find a Partner TP

Peer System OS/390

Client TP:

Allocate

SERVsym

side info

equivalent

Server:

Register

TPsym

Receive

Allocate

side info

allocate

queue

LU LU

Figure 1-10. Using Side Information in Client/Server Communications

Introduction to APPC/MVS

Chapter 1. Introduction to APPC/MVS 1-13

A system programmer uses APPC administration utility (ATBSDFMU) to maintain
the TP profile and side information files by submitting a batch job that can add,
modify, retrieve, and delete entries. An interactive panel dialog using the APPC
administration utility is available with TSO/E 2.3 and above.

For more information about the administrative utility and the dialog, see z/OS MVS
Planning: APPC/MVS Management.

z/OS System Support
APPC/MVS operates primarily in two startable MVS address spaces, APPC and
ASCH. The APPC/MVS communication functions run in the APPC address space
and the APPC/MVS transaction scheduler functions run in the ASCH address
space.

Transactions residing in z/OS can be scheduled by the APPC/MVS transaction
scheduler or by an installation-defined scheduler. Transactions can also be routed
directly to an APPC/MVS server address space, rather than being scheduled.

When the APPC/MVS transaction scheduler is used, the installation can:

v Assign TPs to classes with specific scheduling characteristics.

v Assign TPs to a schedule type of standard or multi-trans. Standard scheduling
allocates resources for each transaction and deallocates them when the TP ends.
Multi-trans scheduling causes a transaction program to remain active between
inbound conversations with its resources available. This type of scheduling
avoids the overhead of repeated resource allocation and deallocation.

If an installation or product requires a specialized scheduler, APPC/MVS provides
system services that allow you to write a customized transaction scheduler, or to
specify a scheduler in addition to the APPC/MVS transaction scheduler. However,
before using an alternate transaction scheduler, you should first investigate using an
APPC/MVS server.

Overview of an APPC/MVS Outbound Request
When a local TP makes a request to establish a conversation with its partner, the
request is called an “outbound” request.

Figure 1-11 on page 1-15 illustrates APPC/MVS initialized and ready to service
communication requests. Communications services are available through
application programming interfaces to any MVS address space, such as TSO/E
users, batch jobs, and started tasks. An application (local TP) running in any
existing MVS address space can allocate a conversation with a partner TP. Note
that the APPC/MVS transaction scheduler plays no role in outbound requests.

If a symbolic destination name was used to allocate a conversation, the side
information file is accessed to translate the symbolic destination name into the
required routing information.

Introduction to APPC/MVS

1-14 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Overview of an APPC/MVS Inbound Request
When a request to establish communications comes from a remote node in the
network into the local z/OS system, it is called an “inbound” request. An inbound
request could also come from the same LU.

An illustration of inbound processing follows.

Side

Information

Schedule

Policy

APPC

VTAM

APPC

Address

Space

TSO

Calls

BATCH

. . .

OS/390

Address Spaces

STC

APPC/MVS

Transaction

Scheduler

Address

Space APPC

TP

Figure 1-11. APPC/MVS Communications Services (Outbound)

Introduction to APPC/MVS

Chapter 1. Introduction to APPC/MVS 1-15

An installation can use Resource Access Control Facility (RACF) or an equivalent
security product to check that the inbound request is authorized to access the local
LU. A security environment can then be established to validate access to other
resources.

The inbound request contains the 1- to 64-character name of the local TP that is to
be attached. When an inbound request enters the system, APPC/MVS first checks
to see whether any address spaces on the local system had previously requested
to serve the request (that is, whether an APPC/MVS server has registered for the
request through the Register_For_Allocates service). If so, APPC/MVS places the
request on an allocate queue from which the server can later select it for
processing. When the server selects the request from the allocate queue, it
receives the conversation ID, and a conversation with the issuer of the request
starts.

If the server used a symbolic destination name to register for the request,
APPC/MVS uses the side information file to translate the symbolic destination name
into the required routing information.

If no servers have registered for the request, APPC/MVS attempts to schedule the
request to a transaction scheduler. APPC/MVS maps the name of the TP targeted
by the request to a TP profile that contains information necessary to set up the

TP

Profile

Schedule

Policy

APPC

VTAM

APPC

Address

Space

APPC

TP

Calls

APPC/MVS

Transaction

Scheduler

Address

Space

APPC/MVS

Transaction

Initiator

APPC/MVS Transaction

Initiators

Allocate

Queue

Side

Information

Server

Address

Space

Figure 1-12. APPC/MVS Communication Services (Inbound)

Introduction to APPC/MVS

1-16 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

appropriate z/OS environment that will be required to run the TP. All inbound TPs
processed by the APPC/MVS transaction scheduler must have a TP profile
associated with them. The TP profile contains information such as:
v Transaction program capabilities and status
v Transaction scheduler information:

– MVS job name
– MVS program name (for example, “IEBMAIL”)
– Data set allocation environment
– Execution class.

The APPC/MVS transaction scheduler is responsible for maintaining pools of
address spaces into which TPs are scheduled. These address spaces can receive
the services of all MVS components, and are called subordinate address spaces.
An APPC transaction initiator is the program that runs in each of the APPC/MVS
transaction scheduler’s subordinate address spaces, and is responsible for setting
up the appropriate environment (as specified in the TP profile) and managing the
processing of the TPs. The APPC/MVS transaction initiator is similar to the MVS
initiator that provides a processing environment for traditional types of work on z/OS
(such as batch jobs). The term transaction initiator is used throughout this
document to mean an APPC/MVS transaction scheduler subordinate address
space. Figure 1-12 on page 1-16 shows these initiators on the right-hand side.

Steps to Write and Install an APPC/MVS Transaction Program
The following is an overview of the main steps to follow when designing, writing,
and testing transaction programs for use with APPC/MVS. Later chapters of this
book give the details about these steps. For information about writing APPC/MVS
servers, see z/OS MVS Programming: Writing Servers for APPC/MVS.

Application Programming Steps
1. Make basic design decisions:

v What functions (including MVS services or data) do you want the application
to provide?

v Do you want to use CPI Communications for portability, use APPC/MVS
services for MVS-specific functions like the use of data spaces or
asynchronous processing, or combine the two types of services?

v Will the transaction program on z/OS run under the APPC/MVS transaction
scheduler with a schedule type of standard or multi-trans, will it run under
another transaction scheduler, or will it be processed by an APPC/MVS
server?

2. Code the transaction program and its partner:

v Code the APPC/MVS TP to hold a conversation with a partner program, using
appropriate callable services based on your design decisions.

v Code the partner program and have it installed on the desired system.
Ensure that the appropriate system programming steps are taken (Steps 1-3
shown in “System Programming Steps” on page 1-18) if the partner program
is to run under the APPC/MVS transaction scheduler.

v Test the transaction program and its partner:

– For inbound TPs, write a TP test shell or use TSO/E TEST.

– Optionally, supply TP profile information.

– Supply side information, if the TP allocates a conversation using a
symbolic destination name.

Introduction to APPC/MVS

Chapter 1. Introduction to APPC/MVS 1-17

– Test an inbound TP under its test shell or under the control of a user-level
TP profile.

System Programming Steps
For details about these system programming steps needed to prepare your
MVS/ESA system for APPC/MVS communications, see z/OS MVS Planning:
APPC/MVS Management.

1. Create one or more TP profile files and make entries for all inbound APPC/MVS
transaction programs that are to be scheduled in response to inbound allocate
requests. Inbound requests that are destined for an APPC/MVS server are not
scheduled, and therefore do not require a TP profile.

2. Create a side information data set and make entries for any symbolic
destination names that local programs use to identify their partners on outbound
allocate requests or Register_For_Allocates requests.

3. Define local LUs and associate a TP profile file name and scheduler for them
through LUADD statements in APPCPMxx members of the parmlib
concatenation. You can also define LUs that are not to be associated with a
transaction scheduler (with the NOSCHED option on the LUADD statement).

4. Define the APPC/MVS local LUs in SYS1.VTAMLST and the logon mode names
in SYS1.VTAMLIB.

5. Define classes for the APPC/MVS transaction scheduler in parmlib member
ASCHPMxx, and assign TPs to those classes in their TP profile entries.

6. Optionally, define LUs, TPs, and APPC/MVS servers to RACF for security
checking. For information about defining security for APPC/MVS servers, see
z/OS MVS Programming: Writing Servers for APPC/MVS.

SYS1.SAMPLIB contains examples showing how to install and run APPC
applications. The examples are contained in the SYS1.SAMPLIB members whose
names begin with ATBCA and ATBLA. See the ATBALL member of SYS1.SAMPLIB
for descriptions of the examples.

Introduction to APPC/MVS

1-18 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Part 2. Programming

© Copyright IBM Corp. 1991, 2001

z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Chapter 2. Designing and Writing an APPC/MVS Transaction
Program

APPC/MVS extends IBM’s Advanced Program-to-Program Communications (APPC)
support to the MVS/ESA operating system. With APPC/MVS, application
programmers can include MVS programs in cooperative processing applications
with partner programs running on the same z/OS system, other z/OS systems, or
other operating systems.

This chapter covers the following topics for designing and writing APPC/MVS
transaction programs:

v Benefits of APPC/MVS, including types of applications that lend themselves to
APPC/MVS

v Conversation services that transaction programs use to communicate

v Flow diagrams of typical conversations

v Environment and design considerations, including:
– Required processing environment
– Portability and MVS-specific services
– Transaction scheduling
– Conversation security
– Data formatting
– Data conversion
– Error handling and recovery.

Benefits of APPC/MVS for Application Programs
Many types of applications are good candidates for using APPC/MVS services. The
most obvious candidates are applications that need to link MVS functions or data
with processing done on other computers in an SNA network. When an MVS
program must communicate with a program on another system, APPC/MVS can
provide a temporary connection, freeing you from having to make a permanent
connection between the programs or create a special access method.

A prime example of a cooperative processing application involving APPC/MVS is
one in which a transaction program on an z/OS server provides z/OS services and
data to a user interface program on a workstation. For example, a
database-accessing program on MVS could receive requests from a partner
program on the workstation, access an MVS database, perform intensive
computations, and send results back to the partner program. This cooperative
application would combine the usability of the workstation, with its end-user
interface features such as graphics and windows, with the processing power and
resources of the z/OS server.

The APPC/MVS part of an APPC cooperative application—an APPC/MVS
transaction program (TP)—is any program in any address space on MVS that
issues APPC/MVS or CPI Communications calls. The TP can run in task or SRB
mode and can use other MVS services. A TP can also:

v Be scheduled in response to inbound allocate requests

v Initiate multiple, concurrent, and asynchronous APPC service requests

v Use JES SYSOUT and Job Submit facilities (only inbound TPs using the
APPC/MVS scheduler)

v Use certain TSO/E programming services and TSO/E command facilities.

© Copyright IBM Corp. 1991, 2001 2-1

An APPC/MVS application can be a powerful adjunct to existing subsystems and
environments such as TSO/E, IMS, CICS and DB2. An APPC/MVS application can
create or access the following types of data:

v New or existing VSAM, sequential or partitioned data sets can be created, read,
or updated through dynamic allocation or the TP profile.

v To update and extract CICS VSAM data, a conversation to a CICS transaction
that uses CICS file control may be required. In some cases it may be possible to
read CICS VSAM data using dynamic allocation, assuming a data disposition of
SHR and the possibility of updates in progress.

v IMS data may be accessed by a conversation request to an IMS application,
through an IMS scheduler, to either extract or update DL/I data. Direct access is
possible if the APPC application is coded to the rules for an IMS BMP.

v DB2 data may be accessed directly through the call attach facilities provided by
DB2.

APPC/MVS TPs may also participate in resource recovery by using the CPI
Communications or MVS Commit or Backout services to synchronize changes with
partner TPs.

In addition, APPC/MVS applications can use MVS facilities such as shared data
spaces, hiperspaces or look-aside techniques to enhance performance and sharing
of data across APPC/MVS transactions.

With this capacity for joining high-end data processing with end-user interfaces,
APPC/MVS lends itself to compute-intensive and I/O- and data-intensive programs
such as:
v Planning and control programs
v Knowledge-based processing
v Collector applications (example: gathering regional sales data)
v Distributor applications (example: price dissemination)
v Exception/alert processing
v Large sorts
v Monitoring/report generation
v Graphics
v Decision support (spread-sheet) applications
v Batch application scheduling
v Extensions of current subsystem environments

In addition to making cross-system connections, APPC/MVS presents a consistent
interface for communications within the same z/OS system. A local TP can use
APPC/MVS to hold a conversation with a partner TP that is under APPC/MVS
control on the same system. The two TPs can be either:

v Defined to the same VTAM logical unit (LU=OWN)

v Defined to different VTAM logical units that are on the same z/OS system
(LU=LOCAL).

A good analogy for this type of intra-MVS communication is a hotel telephone
network; when a guest wants to call another guest in the same hotel, the hotel
switchboard puts the call through to that room directly, and they have a
conversation without using the public phone system at all.

Before designing a new application or adapting an existing one to take advantage
of APPC/MVS, it is important to understand how the parts of the application
communicate; what the partners can exchange in a conversation, and how they do
it.

Designing APPC/MVS TPs

2-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

The Elements of Conversation
The TPs that make up an APPC cooperative processing application communicate
through a conversation that takes place across a standard interface, just as people
communicate through a conversation over the telephone. One partner calls the
other, identifying it in a way that the system recognizes; the system makes the
connection and the partner accepts the conversation. The conversation follows a
protocol, with statements dictated by sequence and the state of the conversation.
For example, one partner talks (sends data) while the other listens (receives data).
They take turns sending and receiving data until one of them ends the
conversation.

APPC conversations follow a half-duplex protocol. That means data can be
transmitted back and forth between partners, but only in one direction at a time. To
make sure that partners do not get out of sequence or both try to communicate at
the same time, APPC enforces conversation states.

Conversation States
The state of a conversation depends on what a transaction program or its partner
has just done and determines what actions a TP can take next.

The basic conversation states in APPC are:

State Description
Reset The initial state, before communications begin or after they end.
Send The state in which a program is allowed to send data.
Receive The state in which a program is allowed to receive data.
Confirm The state in which a program must respond to its partner.

Some of the callable services cause a transition from one state to another. For
example, when a local program in Reset state issues a successful Allocate call, the
local program goes into Send state. The partner goes into Receive state when it
issues CMACCP or the Get_Conversation service to accept the conversation.

APPC/MVS implements these states slightly differently for its CPI Communications
and MVS TP conversation calls. For detailed descriptions of the conversation states
that apply to all the individual conversation calls, see the following:

v For CPI Communications, the section about CPI communications terms and
concepts, and the state table in CPI-C Reference

v For MVS TP conversation calls, “Chapter 4. The APPC/MVS Programming
Interface” on page 4-1 and “Appendix C. APPC/MVS Conversation State Table”
on page C-1.

APPC Conversation Services
This section describes the basic APPC services that TPs use in a conversation.

Starting a Conversation
To start (allocate) a conversation with its partner, a TP calls the Allocate service,
identifying its partner and requesting that a connection be made. This is analogous
to dialing a telephone. The caller can use a symbolic destination name, similar to a
phone number, to identify the partner; the caller does not need to know where the
partner is physically located.

APPC makes the connection if possible and notifies the partner of the conversation
request. The partner can find out who is requesting the conversation through the

Designing APPC/MVS TPs

Chapter 2. Designing and Writing an APPC/MVS Transaction Program 2-3

Get_Conversation service, and can either accept the conversation (analogous to
picking up the phone and talking) or reject it (analogous to hanging up after finding
out who’s calling). Once the conversation is accepted, either TP can use the
Get_Attributes service to obtain additional information about its current partner and
conversation.

Sending and Receiving Data
If the partner TP accepts the conversation, the caller goes into Send state and the
partner goes into Receive state. The caller can then use the Send_Data service,
putting data into buffers and requesting it be sent. APPC/MVS sends the data and
notifies the receiving partner when the data arrives.

The receiver can use the Receive_and_Wait service to wait for inbound data to
arrive, or use the Receive_Immediate service to receive any data that is available
without waiting.

The format of the data depends on the type of conversation. In a basic
conversation, the caller formats the data into separate records, specifying the length
and data of each record. In a mapped conversation, the caller simply provides the
data and lets APPC format it. The sender and receiver need to agree in advance on
which type of conversation they will use.

When a TP uses the Send_Data service, APPC tries to optimize data transmission
by waiting until buffers are full or until the TP performs some other conversation
service. The TP can also use the Flush service to remain in send state while forcing
APPC to send buffered data immediately.

Requesting Permission to Send
A local TP in Receive state can request permission to send data, for instance, in
response to something it received. APPC informs the partner of the request, which
the partner can grant or ignore. To grant the request, the partner issues a Receive
service, thus entering Receive state and putting its partner into Send state.

Granting Permission to Send
A TP in Send state can use the Prepare_to_Receive service to put itself in Receive
state and put its partner in Send state. A TP can achieve the same result by using
the Receive_and_Wait service, but Receive_and_Wait requires a receive buffer as
input, while Prepare_to_Receive does not.

Requesting Confirmation
TPs can synchronize their communications by requesting and granting
confirmations. In some situations, a TP might need to confirm that its partner has
received and successfully processed data already sent. For example, a TP that is
uploading data from a workstation to the host would not want to delete the data
until it is sure its partner on the host received it. When the sending TP requests a
confirmation, APPC sends any buffered data to the partner. When the partner
receives all the data, the partner also receives the confirmation request; the partner
can then grant the confirmation or reject it by sending an error notification. If a
conversation is to include confirmations, the requesting TP must indicate that at the
start of the conversation.

Sending Error Notification
When a TP encounters an error or cannot grant a confirmation, the TP can send an
error notification to its partner, from either Send or Receive state. For example, if
TP A is sending records to TP B and then deleting them, TP B should notify A if an

Designing APPC/MVS TPs

2-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

internal error prevents B from filing a record. Otherwise, TP A might delete the
record and lose it forever. To notify partners and recover from such errors, TPs use
the Send_Error service.

Returning Error Information
When APPC/MVS returns a return code that indicates an error in a call to a
conversation callable service, your application can call the Error_Extract service to
return detailed information about the error. For information about how to use
Error_Extract see “Chapter 6. Diagnosing Problems with APPC/MVS TPs” on
page 6-1.

Ending Conversations
When a TP is finished communicating with its partner, it should end the
conversation with the Deallocate service, which is analogous to hanging up in a
phone conversation. The partner then receives a deallocation indicator and any
remaining data. The partner goes into Reset state and typically finishes its own
processing.

Identifying TP Partners to MVS
After TPs are written, they need to be defined to the system before they can
communicate. The system needs to know where partner TPs are located and needs
other characteristics to schedule the TPs properly. That information goes in TP
profiles and side information files on MVS.

Supplying TP Profiles on MVS
If a TP on MVS is the target of an allocate request from its partner, the target
(inbound) TP needs a TP profile containing routing and scheduling information.
APPC/MVS uses the TP profile to locate and initialize the inbound TP.

Supplying Side Information on MVS
TPs can specify symbolic names for their partners when allocating a conversation.
The symbolic name must correspond to an entry in a side information data set that
contains the partner’s name, location and logon mode. The symbolic name frees
the TP programmer from having to know that information.

For more details about TP profiles and side information, see z/OS MVS Planning:
APPC/MVS Management.

Relating MVS Callable Services to CPI Communications
Table 2-1 shows how APPC callable services on MVS relate to CPI
Communications. The MVS TP services (ATBxxxx) are MVS-specific and make use
of the MVS architecture. Calls to CPI Communications (CMxxxx) are the same on
many systems and TPs can use them for portability.

Table 2-1. Mapping of MVS TP Services and CPI Communications

MVS TP Conversation Services CPI Communications

Allocate CMINIT (Initialize_Conv)
together with
CMALLC (Allocate)

Confirm CMCFM

Confirmed CMCFMD

Deallocate CMDEAL

Error_Extract (no CPI equivalent)

Flush CMFLUS

Designing APPC/MVS TPs

Chapter 2. Designing and Writing an APPC/MVS Transaction Program 2-5

Table 2-1. Mapping of MVS TP Services and CPI Communications (continued)

MVS TP Conversation Services CPI Communications

Get_Attributes CMECS (Extract_Conversation_State),
CMEMN (Extr_Mode_Name),
CMEPLN (Extr_Part_LU_Name),
CMESL (Extr_Sync_Level)

Get_Conversation CMACCP

Get_TP_Properties (no CPI equivalent)

Get_Type CMECT

Post_on_Receipt (no CPI equivalent)

Prepare_to_Receive CMPTR

Receive_Immediate CMRCV

Receive_and_Wait CMRCV

Reject_Conversation (no CPI equivalent)

Request_to_Send CMRTS

Send_Data CMSEND

Send_Error CMSERR

Set_Conversation_Accounting_Information (no CPI equivalent)

Set_Syncpt_Options (no CPI equivalent)

If you would also like to see how these and other APPC/MVS callable services are
related to the SNA LU 6.2 architecture, refer to “Appendix D. Support for SNA LU
6.2 Verbs and Option Sets” on page D-1.

Flow Diagrams of Typical APPC/MVS Conversations
The following figures show the flow of control in some of the most typical kinds of
conversations. These examples use the MVS TP conversation calls; for similar
flows using CPI Communications, see Figure 1-3 on page 1-4 and CPI-C
Reference.

In these flows, the first occurrence of each callable service (ATBxxxx) is
accompanied by the corresponding conversation service name, for example, the
Allocate service. The callable services are abbreviated to show only the pertinent
parameters. For clarity, the parameter values appear in parentheses after the
parameter name; in actual syntax, the values are positional.

Designing APPC/MVS TPs

2-6 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Simple One-Way Conversation

Any APPC conversation includes three phases: initialization, data exchange, and
termination. In Figure 2-1, a local MVS transaction program (program A) initiates the
conversation, sends data to its partner (program B), and ends the conversation.

1. The Allocate service initializes the conversation, specifying the partner with a
symbolic destination name. That name corresponds to a side information entry
naming program B and identifying program B’s LU name and the session mode
name.

2. The Send_Data service specifies that a block of data be put in a buffer for
sending.

3. The Deallocate service notifies APPC that this is the end of the conversation,
forcing the LU to send the buffered data. The output from the three above
services (allocate, data, deallocate) crosses the network; APPC uses the output
from the Allocate service to initialize program B.

4. Program B issues the Get_Conversation service to get information about the
caller (program A).

5. Program B issues the Receive_and_Wait service to receive the data. The
data_received parameter and return code tell program B that the data was
complete and that the conversation was deallocated.

┌─────────┐ ┌─────────┐
│ PROGRAM │ │ PROGRAM │
│ │Í───────────────────────────────Ê│ │
│ A │ │ B │
└─────────┘ └─────────┘
(RUNNING)

Call ATBALC2 (Allocate) «1¬
Sym_Dest_Name(Mypartner)

Call ATBSEND (Send_Data) «2¬

Call ATBDEAL «3¬
(Deallocate) ─────────────────────────────Ê (LU STARTS TP B)

ALLOCATE, DATA, DEALLOCATE

«4¬ Call ATBGETC (Get_Conversation)

«5¬ Call ATBRCVW (Receive_and_Wait)
(END CONVERSATION) DATA_RECEIVED=DATA_COMPLETE

RC=DEALLOCATE-NORMAL

Figure 2-1. One-Way Conversation

Designing APPC/MVS TPs

Chapter 2. Designing and Writing an APPC/MVS Transaction Program 2-7

Simple Two-Way Conversation

Figure 2-2 shows a more complete conversation, in which both partners send and
receive data.

1. Program A allocates a conversation with program B.

2. Program A sends data as in Figure 2-1 on page 2-7.

3. Program A calls Receive_and_Wait to wait for data from program B, changing
its own state from Send to Receive and forcing its LU to send buffered data.

4. Program B calls the Get_Conversation service to accept the conversation.

5. When program B receives the data, its status_received parameter indicates that
it has entered Send state (caused by A entering Receive state) and B can now
send data.

6. Program B calls the Send_Data service, with data that the LU puts in a buffer.

7. Program B calls the Receive_and_Wait service, entering Receive state again,
and forcing the LU to send the buffered data.

8. Program A receives the data, checking for completion. Program A then ensures
that the call to ATBRCVW receives a status_received of send_received, which is
necessary to deallocate the conversation (because Program A can call
Deallocate only in Send state). Then program A deallocates the conversation.

┌─────────┐ ┌─────────┐
│ PROGRAM │ │ PROGRAM │
│ │Í───────────────────────────────Ê│ │
│ A │ │ B │
└─────────┘ └─────────┘
(RUNNING)

Call ATBALC2 «1¬
TP_NAME(B)

Call ATBSEND «2¬

Call ATBRCVW «3¬
(Receive_and_Wait) ────────────────────Ê (LU STARTS PGM B)
. ALLOCATE, DATA, SEND
. «4¬ Call ATBGETC
.
. «5¬ Call ATBRCVW
. ATA_RECEIVE=DATA_COMPLETE
. STATUS_RECEIVED=SEND
.
. «6¬ Call ATBSEND
.
.
.

DATA_RECEIVED= Í────────────────── «7¬ Call ATBRCVW
DATA_COMPLETE DATA, SEND .
STATUS_RECEIVED= .
SEND_RECEIVED .

.

.
Call ATBDEAL «8¬ ────────────────────────Ê RC=DEALLOCATE_NORMAL

DEALLOCATE

(END CONVERSATION)

Figure 2-2. Two-Way Conversation

Designing APPC/MVS TPs

2-8 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Program A enters Reset state, as does program B when its return code from
Receive_and_Wait indicates the deallocate request was received.

Confirmation of a Transaction

A transaction program can request that its partner confirm that all the data sent so
far has been received and processed successfully. In Figure 2-3:

1. Program A allocates a conversation with program B, setting the Sync_level
parameter to CONFIRM to allow confirmation processing on the conversation.

2. Program A sends data to program B.

3. Program A calls the Confirm service. The confirmation request forces the LU to
send buffered data.

4. Program B calls the Get_Conversation service to accept the conversation.

5. Program B receives the data, checking for completion, and the status received.
The status indicates that a confirmation has been requested.

6. Program B calls the Confirmed service, granting the confirmation. It could have
sent an error notification instead, if something was wrong.

7. The confirmation results in a return code of OK for program A’s confirmation
request.

8. Program A continues sending data.

┌─────────┐ ┌─────────┐
│ PROGRAM │ │ PROGRAM │
│ │Í───────────────────────────────Ê│ │
│ A │ │ B │
└─────────┘ └─────────┘

Call ATBALC2 «1¬
TP_NAME(B)
SYNCLEVEL(CONFIRM)

Call ATBSEND «1¬

Call ATBCFM (Confirm) «3¬ ─────────────────Ê (LU STARTS PGM B)
. ALLOC, DATA, CONFIRM
. «4¬ Call ATBGETC
.
. «5¬ Call ATBRCVW
. DATA_RECEIVED=DATA_COMPLETE
. STATUS_RECEIVED=CONFIRM
.
.
.

RC=OK «7¬ Í─────────────────────── «6¬ Call ATBCFMD Confirmed)
CONFIRMED

Call ATBSEND «8¬ Call ATBRCVW
.
.
.

Figure 2-3. Example of a Confirmed Transaction

Designing APPC/MVS TPs

Chapter 2. Designing and Writing an APPC/MVS Transaction Program 2-9

Sending Error Notification

A transaction program can send an error notification to its partner to report that an
error occurred and to cause buffer data to be purged.

In Figure 2-4, program A has already allocated the conversation and is in Send
state, with program B in Receive state.

1. Program A calls the Send_Data service, causing the LU to place the data (a
logical record) in its buffer. Nothing is sent.

2. Program B calls the Receive_and_Wait service, suspending processing until it
receives data.

3. Program A calls Send_Data again, causing the LU to place more data (another
logical record) in its buffer. The LU now has enough data to send, based on
session characteristics, so it sends the data.

4. The LU returns control to program B, indicating that the program has received
a complete record.

5. Program B encounters an error in the data or in its processing and calls the
Send_Error service. The Send_Error service causes program B’s LU to purge
information it has received but not yet sent, and to send a negative response.
Program B’s processing is suspended awaiting Send control.

6. Program A’s LU receives the negative response, purging any remaining
buffered data from program A.

7. Program A, unaware of the error yet, calls Send_data, which fails. The LU
does not accept the data. Instead, the LU sends Send control to program B,
suspending program A.

8. The LU for program B receives the Send control, sends the error notification,
and returns control to program B.

┌─────────┐ ┌─────────┐
│ PROGRAM │ │ PROGRAM │
│ │Í───────────────────────────────Ê│ │
│ A │ │ B │
└─────────┘ └─────────┘
(RUNNING) (RUNNING)

(IN CONVERSATION) (IN CONVERSATION)

Call ATBSEND «1¬ «2¬ Call ATBRCVW
RC=OK

.

.

Call ATBSEND «3¬ ──────────────────────Ê «4¬ RC=OK
RC=OK DATA_RECEIVED=

DATA_COMPLETE

«6¬ Í────────────────────── «5¬ Call ATBSERR (Send_Error)
.

Call ATBSEND «7¬ ───────────────────────────Ê .
. .
RC= «10¬ Í───────────────────── «8¬ RC=OK
(Program_Error_Purging)

Call ATBRCVW «11¬ «9¬ Call ATBSEND
.
.
.

Figure 2-4. Example of Send_Error in Receive State

Designing APPC/MVS TPs

2-10 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

9. Program B calls the Send_Data service, possibly to transfer more
error-recovery information.

10. Program A’s LU returns control to it, along with the error notification (return
code program_error_purging).

11. Now in Receive state, program A calls Receive_and_Wait.

TP Environment and Design Considerations
Your choice of APPC/MVS callable services to use in a transaction program
depends on the purpose of the application and design considerations such as
portability, use of MVS-specific services, and transaction scheduling. Those factors
and their implications are discussed in the following sections.

As you think about the design of cooperative applications that use APPC/MVS,
consider the following questions:

v Which part or parts of the application should run under MVS?

v For the MVS part of the application, do you want the code to be portable to other
systems? Do you want to include services that are unique to MVS?

v When inbound requests for the program arrive, will the APPC/MVS transaction
scheduler or another transaction scheduler initiate the program?

v Assuming you use the APPC/MVS transaction scheduler, what schedule type
(standard or multi-trans) should you design for? Considerations include:
– How often the program will be requested
– How long it will take the program to run
– How much resource allocation the program will require
– Whether you can provide security for multiple partners.

You will need to decide whether it would be more efficient for the transaction
program to be initialized and ended for each conversation (standard scheduling),
or to remain active between conversations and serve different partners in
sequence (multi-trans scheduling).

v Should the application use basic or mapped conversations? In other words,
should it create logical records in a special format for transmitting data, or let
APPC do the formatting?

The answers to these questions are fundamental to the design of an APPC/MVS
TP. The following sections will help you find the answers.

The General APPC/MVS Environment for Transaction Programs
Any MVS program that calls APPC/MVS services, or is attached by an APPC/MVS
LU in response to an inbound allocate request, is considered to be an APPC/MVS
transaction program. The following is a description of the general processing
environment for all APPC/MVS TPs, including requirements they must meet and
features they can use.

Requirements for TPs in Problem-Program State
The following requirements apply to TPs that are written to run in problem-program
state:

v APPC/MVS services must be invoked in 31-bit addressing mode.

v All parameters of APPC/MVS services must be addressable by the caller and in
the primary address space, except for the buffer parameter of the Send_Data,
Extract_Information, Receive_and_Wait, and Receive_Immediate services, which
may reside in another address space or data space.

Designing APPC/MVS TPs

Chapter 2. Designing and Writing an APPC/MVS Transaction Program 2-11

If you are writing a TP to run in problem-program state, you can skip over General
Requirements and continue reading at “Features of APPC/MVS for All TPs”.

General Requirements
The following general requirements apply to APPC/MVS services invoked by any
TP but include requirements (such as cross memory allowed and locks not allowed)
that are only of concern to TPs running in supervisor state or PSW key 0-7.

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task or SRB

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: All parameters must be addressable by the caller
and in the primary address space, except for the
buffer parameter of Send_Data,
Extract_Information, Receive_and_Wait, and
Receive_Immediate services, which may reside in
another address space or data space.

Features of APPC/MVS for All TPs
The following features of the APPC/MVS environment are available to all
APPC/MVS TPs.

v Multiple conversations within a program

APPC/MVS transaction programs can hold one or more outbound conversations
at the same time. There is no limit to the number of outbound conversations
APPC/MVS TPs may have other than a limit imposed by the number of available
sessions.

Generally, a TP is limited to conversing with only one inbound TP at a time.
However, you can use either of the following methods to allow an application to
process multiple inbound conversations concurrently:

– Schedule multiple copies of the same TP to converse with different partner
TPs. It is then possible for several outbound TPs to allocate conversations
with different instances of the same inbound TP.

– Design the TP as an APPC/MVS server. Such programs can process multiple
inbound conversations in the same address space. For more information, see
z/OS MVS Programming: Writing Servers for APPC/MVS.

v Shared conversations across program boundaries

APPC/MVS transaction programs can call other programs and attach other tasks,
and the called programs and attached tasks can do the same. In addition,
APPC/MVS allows programs to share a single conversation across multiple tasks
or SRBs in an address space.

APPC/MVS considers the scope of a TP to be the home address space. Access
to a conversation is limited to programs whose home address space is the same
as the home address space of the TP that allocated or accepted the
conversation. However, the TP may access the conversation while also executing
code in another address space.

Designing APPC/MVS TPs

2-12 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

The management and integrity of conversations within an address space is the
responsibility of the programs within, and a TP is considered active until control
returns to the system or the address space is terminated.

v Simultaneous execution of authorized and unauthorized TPs

If your application plans to run authorized and unauthorized TPs simultaneously
in the same address space, the application must ensure that the integrity of
conversations is maintained within the address space. When an authorized TP
allocates a conversation, APPC/MVS does not protect the conversation from
unauthorized TPs that are running on other dispatchable units within the address
space. Therefore, unauthorized TPs can call APPC services on the conversation
that is being used by the authorized part of an application, and might receive
sensitive data or send incorrect data to the partner TP. (An authorized TP is one
that runs in either supervisor state or PSW key 0-7.)

v Concurrent APPC requests

APPC/MVS allows concurrent or multiple APPC requests to be issued and
outstanding at the same time within a transaction program, if the requests are for
different conversations. An APPC request from a particular conversation is
rejected by APPC/MVS when there is an outstanding request from the same
conversation. There is one exception: you can issue a Deallocate call with a
deallocate type of Deallocate_ABEND to end a conversation at any time, when
you have an outstanding APPC call from another task on that conversation.

v Deferred attention interrupts

All APPC/MVS callable services are protected from attention interrupts. If a user
presses the attention interrupt key to interrupt the processing of a transaction
program, server, or transaction scheduler after it has called an APPC/MVS
callable service, the system defers the interrupt until the callable service
processing is complete.

v Support for SRB-mode callers

Transaction programs in SRB mode may invoke both MVS-specific callable
services and CPI Communications calls. All APPC/MVS services available to a
task-mode caller are available to an SRB mode caller.

v JES and TSO/E services

All inbound TPs that are scheduled by the APPC/MVS transaction scheduler can
use the same JES2 and JES3 services and subsystem interface (SSI) calls that
are intended for use by batch jobs on MVS. For a list of intended SSI calls, see
z/OS MVS Using the Subsystem Interface. Inbound TPs can use the same JES
SYSOUT and data set integrity checking services available to other MVS
applications, with the exception that SYSOUT data sets allocated by inbound TPs
are treated as spin data sets, and SYSOUT data is printed only when the TP
ends or the SYSOUT data set is deallocated or closed and freed. If the
installation changes the default subsystem for APPC work, then these JES
services may be unavailable to inbound TPs.

Standard APPC/MVS TPs that are scheduled by the APPC/MVS transaction
scheduler can access many TSO/E services from an MVS (non-TSO)
environment through the TSO/E environment service. For more information about
the TSO/E environment service, including lists of the TSO/E services that it
supports, see z/OS TSO/E Programming Services. A standard TP profile can also
provide TSO/E services to an inbound TP by running the TSO/E Terminal Monitor
Program.

Portability and MVS-Specific Services
One of the first decisions affecting the design of an APPC/MVS transaction is
portability. If you want your transaction program to be able to run on other operating

Designing APPC/MVS TPs

Chapter 2. Designing and Writing an APPC/MVS Transaction Program 2-13

systems besides z/OS, you can use CPI Communications to make it more easily
portable to other systems including AIX, OS/400, OS/2, and VM. APPC/MVS
supports Common Programming Interface (CPI) Communications routines as
documented in CPI-C Reference with deviations listed in “Chapter 3. Using CPI
Communications” on page 3-1 of this book.

If you want your transaction program to be able to use specific features of MVS and
provide them to transaction programs on other systems, the MVS TP conversation
services might be more appropriate. For example, using MVS TP conversation
services, an MVS transaction program can send data to a partner program from an
MVS data space, and can specify asynchronous processing.

Both CPI Communications and MVS TP services support high-level languages
including COBOL, C, FORTRAN, PL/I, and REXX. You can combine calls to CPI
Communications and MVS-specific services in the same conversation from a TP
written in one of those languages. Calls to the MVS-specific services will not
change any CPI Communications conversation characteristics previously
established by a CPI Communications call. Any combination of MVS-specific
services with CPI Communications calls will affect portability, because the MVS
services will not work on other systems.

One way to minimize their affect on portability is to call MVS-specific services from
subroutines that can be bypassed in non-MVS environments.

Features of the MVS-Specific Services
The following are features of APPC/MVS that TPs can get from the MVS-specific
(ATBxxxx) services only:

v Support for data spaces

APPC/MVS allows send and receive data buffers to reside in data spaces and
accommodate large amounts of data. The following LU 6.2 conversation services
use data buffers and accept an access list entry token (ALET), along with the
buffer address, to designate the address space or data space in which the buffer
resides:
– Extract_Information
– Receive_and_Wait
– Receive_Immediate
– Send_Data

The services listed above accept ALETs for entries on the dispatchable unit
access list (DU-AL) for the unit of work that calls those services. Keep the
following restrictions in mind when specifying an ALET:

– The ALET cannot be the value 1 (which indicates secondary ASID).

– The ALET can represent an entry on the primary address access list
(PASN-AL) only when the ALET points to a SCOPE=COMMON data space
(also known as a common area data space).

A SCOPE=COMMON data space provides your TP with virtual storage that is
addressable from all address spaces and all programs. Your TP might want to
use a common area data space when it has large amounts of data that it
wants to share across multiple address spaces. For more information about
how to create and use SCOPE=COMMON data spaces, see z/OS MVS
Programming: Extended Addressability Guide.

– Parameter lists and parameters other than data buffers must reside in the
caller’s primary address space.

– Asynchronous Processing

Designing APPC/MVS TPs

2-14 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

TPs can use many of the APPC/MVS services asynchronously by specifying
the address of an event control block (ECB) on the Notify_Type parameter.
The TP can then continue other processing without waiting for the service to
complete. When the service completes, APPC/MVS notifies the TP by posting
the ECB.

– Transaction Schedule Types

The APPC/MVS transaction scheduler lets you assign a schedule type of
standard or multi-trans to transaction programs.

When transaction programs are scheduled as standard (the default),
APPC/MVS initializes them for each inbound conversation request and
terminates them when they finish processing. Standard scheduling requires
that a TP’s resources be allocated and deallocated for each inbound
conversation, and isolates TPs from each other and from subsequent requests
for the same transaction program. The standard schedule type provides full
security and basic performance for TPs that are not invoked very frequently or
do not require extensive allocation of resources.

In contrast, the multi-trans schedule type causes a transaction program to
remain active between inbound conversations, with its resources available.
After each conversation ends, the next calling partner can use the same
instance of the transaction program and avoid the overhead of repeated
resource allocation and deallocation.

Multi-trans TPs run under a shell environment that is responsible for doing all
necessary cleanup to ensure that a TP’s conversations and data are secure
for consecutive users. With proper design, multi-trans scheduling can offer
greater performance for transactions that are requested often by multiple
users, that have a high resource overhead, and that finish processing
comparatively quickly.

To use the multi-trans scheduling option, transaction programs must be
defined with a TP schedule type of multi-trans in the TP profile. For standard
scheduling, the TP schedule type can be set to standard or omitted. For more
information, see “Using TP Schedule Types” on page 4-17.

Note: Multi-trans scheduling is a feature of the APPC/MVS transaction
scheduler. If your transaction program runs under another transaction
scheduler on MVS, multi-trans scheduling is unavailable.

Security
APPC/MVS gives transaction programmers the ability to specify conversation
security. On an Allocate call to a partner on MVS, you can specify the security
environment under which the partner will run. Depending on the level of security
you choose, the environment information may consist of a user ID, password and a
security profile name. If RACF is installed on the system, the security profile name
is treated as a RACF group name.

The installation can provide for security checking at the LUs, to verify inbound
allocate calls and reject those that do not specify the required security environment
information.

The APPC/MVS TP conversation services and CPI Communications provide
different levels of conversation security on MVS. The APPC/MVS Allocate service
allows a local TP to specify one of three possible levels of security when allocating
a conversation, based on the partner program’s security requirements. The level of
security tells the partner LU what security environment information (if any) to verify
and use.

Designing APPC/MVS TPs

Chapter 2. Designing and Writing an APPC/MVS Transaction Program 2-15

v Security_none

Specifies that no user ID, password, or profile name is passed on the allocation
request for the partner LU to verify or use.

v Security_same

Specifies that the partner TP should run under the same security environment
(user ID and possible security profile name) as the local (calling) TP. The local
TP’s security environment may have been established at any of the following
times:

– job initiation

– Start time

– LOGON time

– work context creation time

– explicitly requested by the caller through RACINIT

– if the caller is itself an allocated transaction program, at the time of its own
allocation

v Security_pgm

Specifies that the local TP is providing a user ID, password, and security profile
name to establish the security environment for the conversation. The partner LU
can verify them.

Unlike the APPC/MVS Allocate service, the CPI Communications CMALLC call
always allocates conversations using the security environment of the caller
(security_same).

Using Basic or Mapped Conversations
Another design decision is whether to use a basic or mapped conversation. This
decision affects the format and, potentially, the performance of data transmission.

Data travels between APPC transaction programs in buffers provided by the LUs
involved. APPC defines a logical record format for the data as a sequence of length
and data fields, with the 2-byte length fields (LLs) indicating the amount of data to
follow before the next length field. The typical data pattern is “LL, data, LL, data.”
The transaction programs can either format their data in this pattern themselves or
leave the formatting to APPC, depending on the needs of the application.

Transaction programs that format their own data for transmission use what are
called basic conversations. Those that let APPC do the formatting use mapped
conversations.

v Basic conversations allow transaction programs to define logical records to their
own specifications. The transaction programs can specify the exact lengths of
their records using the “LL,data,LL,data” format and avoid the overhead of
mapping done by APPC. Basic conversations give potential performance benefits
and greater control.

v Mapped conversations are easier to code; they allow applications to send data in
any format the partner programs expect. APPC itself maps the data into and out
of the “LL,data,LL,data” logical record format for each transmission. Mapped
conversations are recommended for most applications.

Both CPI Communications and LU 6.2 callable services support basic and mapped
conversations. To specify a mapped or basic conversation, you can use the CMSCT
(Set_Conversation_Type) service, or the Conversation_type parameter of the LU
6.2 Allocate service.

Designing APPC/MVS TPs

2-16 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Data Conversion
When TPs communicate between a host system and a workstation, the data that
they send must be converted between EBCDIC and ASCII. You can do the
conversion on either end of the conversation, either before the data is sent or after
it is received. One important design consideration is portability; if a TP is portable
and may reside on a host or a PWS, its partner must know where the TP is located,
to avoid doing unnecessary conversion in cases when both TPs are running in the
same environment.

Using Protected Conversations
To improve data integrity in a distributed processing environment, APPC/MVS,
together with RRS, participates in the two-phase commit protocol to provide
recovery for transaction programs. The two-phase commit protocol is a set of
actions that resource managers and a syncpoint manager perform to ensure that a
program’s updates to distributed resources are coordinated. Through this protocol, a
series of resource updates are treated as an atomic action; that is, the updates are
either all made (committed) or not made (backed out).

In z/OS, your installation can enable APPC/MVS logical units (LUs) to act as
resource managers, by meeting the requirements listed in z/OS MVS Planning:
APPC/MVS Management.

To allow APPC/MVS TPs and their partner TPs to establish protected conversations:

v Refer to the overview of resource recovery in z/OS MVS Programming: Callable
Services for HLL, which describes the protocol and the roles of resource
recovery programs, which can include APPC/MVS TPs and their partners.

v Update existing, or code new, TPs to:

– Issue Allocate calls with a Sync_level parameter value of 2 (syncpt), which
identifies the conversation as protected. Both the local LU and partner LU
must be enabled to support conversations with a synchronization level of
syncpt, and the specified mode name, if any, must be a value other than
SNASVCMG.

– Issue Commit or Backout callable services to coordinate resource updates
with partner TPs. See z/OS MVS Programming: Callable Services for HLL for
the Commit and Backout service call names, syntax, and parameter
descriptions; see “Appendix C. APPC/MVS Conversation State Table” on
page C-1 for information about the conversation states in which a TP may call
the Commit and Backout services.

– Optionally issue the new Set_Syncpt_Options callable service to alter the
default options that determine how APPC/MVS processes Commit and
Backout requests. To determine the options in effect, your TP can issue the
Get_TP_Properties (ATBGTP4) service.

v Evaluate existing code to determine whether logic changes are required to
correctly handle new return codes from APPC/MVS or CPI-C services.

You might notice some performance impact for TPs that establish protected
conversations and call the syncpoint services (Commit and Backout). The amount
of impact depends on the frequency of syncpoint operations, the number of
resource managers involved, and the scope of the distributed application (within
one system, within a sysplex, across platforms). Generally speaking, the improved
data integrity should outweigh the performance impact.

Designing APPC/MVS TPs

Chapter 2. Designing and Writing an APPC/MVS Transaction Program 2-17

If your TP is a multi-trans TP, design it to issue a Commit or Backout service call
before issuing the next call to the Get_Transaction or Return_Transaction service.
Otherwise, APPC/MVS abnormally deallocates the TP’s conversations and causes
all protected resources updated since the last commit to be backed out.

Error Handling and Deallocation of Conversations
When a TP calls APPC/MVS services with incorrect parameters, unknown values,
or in the wrong conversation state, APPC/MVS returns an error return code. In
some situations, the description of that return code provides enough information to
help you diagnose and correct the error. In those cases, you should design your TP
so it handles error return codes and sends appropriate messages to end users.

Error_Extract Service
In situations where an error return code does not provide adequate problem
determination information, your TP can call the Error_Extract conversation service
to return detailed information about the error. Error_Extract provides reason codes
and messages that describe errors in APPC/MVS conversations. If a partner system
or TP sends error log information to MVS, Error_Extract can return the error log
information and a product set identifier. For more information about calling the
Error_Extract service, see “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1.

Send_Error Service
Your TP can call the Send_Error service to notify a partner TP or system of errors.
If a TP finds an error from which it cannot recover, it should have a recovery routine
to deallocate the conversation. If a TP ends abnormally without deallocating the
conversation, its partner may continue to send data or wait to receive data until
APPC/MVS cleans up the address space of the ending TP. APPC/MVS deallocates
any outstanding conversations in the address space with a deallocate type of
ABEND_SVC at the following times:

v If any asynchronous verbs are outstanding at the end of a step, APPC/MVS
deallocates the address space’s conversations, and the job is flushed (that is,
subsequent job steps are not processed).

v At end of a job. APPC/MVS cleans up the initiator address space and deallocates
any outstanding conversations.

You should design each TP to be able to handle the unexpected deallocation of its
conversation at any time. Also be sure to deallocate conversations as soon as they
are no longer needed, to free sessions for use by other TPs in the LU. TPs should
always deallocate conversations before ending.

API Trace Facility
Using the API trace facility, you can diagnose not only errors that occur during a
specific call, but also problems with the conversation flow between the TP and its
partners. Depending on the location of the partners, you might have to use the API
trace facility together with tracing facilities provided for other platforms, such as
OS/2.

API trace data includes entries for:
v Parameters and values specified on calls issued for APPC/MVS and CPI-C

services, and values provided on return from those calls.
v The same diagnostic information that the APPC/MVS Error_Extract service

provides for calls that return non-zero return codes.
v Parameters and values specified on START and STOP requests for the API trace

facility.

Designing APPC/MVS TPs

2-18 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Through ATBTRACE parameters, you can start tracing for only specific TPs or
users, or for many TPs, many conversations, and many users.

For more information about the API trace facility, see “Chapter 6. Diagnosing
Problems with APPC/MVS TPs” on page 6-1.

Note:

If you plan to use the programming interface for CPI Communications, read
Chapter 3. Using CPI Communications and Chapter 5. Installing and Testing
Transaction Programs. If you do not plan to use CPI Communications,
continue reading with Chapter 4. The APPC/MVS Programming Interface.

Designing APPC/MVS TPs

Chapter 2. Designing and Writing an APPC/MVS Transaction Program 2-19

Designing APPC/MVS TPs

2-20 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Chapter 3. Using CPI Communications

Note

After reading this chapter, refer to the Common Programming Interface
Communications Reference for complete details on coding CPI
Communications routines.

Also read Chapter 5. Installing and Testing Transaction Programs for
information about supplying TP profiles and side information on MVS.

Like the MVS-specific TP services, CPI Communications lets your programs
communicate with other programs on the same z/OS system, other z/OS systems,
or other operating systems in an SNA network. However, CPI Communications has
the advantage of portability: programs using CPI Communications can be moved
between different systems with minimum changes.

CPI Communications in APPC/MVS
APPC/MVS supports the following CPI Communications calls:

v CMACCP (Accept_Conversation) accepts an incoming conversation.

v CMALLC (Allocate) allocates a conversation between a local program and a
partner program, allocating a session between the local logical unit and the
partner logical unit, if a session is needed.

v CMCFM (Confirm) sends a confirmation request to the partner program and waits
for a reply, so the two programs can synchronize their processing.

v CMCFMD (Confirmed) sends a confirmation reply to the partner program, in
response to a confirmation request.

v CMDEAL (Deallocate) deallocates the specified conversation. The session might
or might not remain bound.

v CMECS (Extract_Conversation_State) extracts the conversation state for the
specified conversation.

v CMECT (Extract_Conversation_Type) extracts the conversation type
characteristic for the conversation and returns the value to the program.

v CMEMN (Extract_Mode_Name) extracts the mode name characteristic for the
conversation and returns the value to the program.

v CMEPLN (Extract_Partner_LU_Name) extracts the partner LU name
characteristic for the conversation and returns the value to the program.

v CMESL (Extract_Sync_Level) extracts the synchronization level characteristic for
the conversation and returns the value to the program.

v CMFLUS (Flush) flushes the local LU’s send buffer, forcing the LU to send any
buffered data.

v CMINIT (Initialize_Conversation) initializes values for various conversation
characteristics.

v CMPTR (Prepare_to_Receive) changes the program from Send to Receive state
in preparation to receive data.

v CMRCV (Receive) receives data on the specified conversation.

v CMRTS (Request_to_Send) notifies the partner program that the local program is
requesting to enter Send state for the conversation.

© Copyright IBM Corp. 1991, 2001 3-1

v CMSCT (Set_Conversation_Type) sets the conversation type characteristic for
the conversation.

v CMSDT (Set_Deallocate_Type) sets the deallocate type characteristic for the
conversation.

v CMSED (Set_Error_Direction) sets the error direction characteristic for the
conversation.

v CMSEND (Send_Data) sends data on the specified conversation.

v CMSERR (Send_Error) informs the partner program that the local program has
detected an error.

v CMSF (Set_Fill) sets the fill characteristic for the conversation.

v CMSLD (Set_Log_Data) sets the log data characteristic for the conversation.

v CMSMN (Set_Mode_Name) sets the mode name characteristic for the
conversation.

v CMSPLN (Set_Partner_LU_Name) sets the partner LU name characteristic for
the conversation.

v CMSPTR (Set_Prepare_to_Receive_Type) sets the prepare to receive type
characteristic for the conversation.

v CMSRC (Set_Return_Control) sets the return control characteristic for the
conversation.

v CMSRT (Set_Receive_Type) sets the receive type characteristic for the
conversation.

v CMSSL (Set_Sync_Level) sets the synchronization level characteristic for the
conversation.

v CMSST (Set_Send_Type) sets the send type characteristic for the conversation.

v CMSTPN (Set_TP_Name) sets the TP name characteristic for the conversation.

For guide and reference information about using CPI Communications routines, see
CPI-C Reference APPC/MVS implements CPI Communications as documented in
that publication, with the following exceptions:

v Data logging: calls to CMSLD (Set_Log_Data) and parameters dealing with the
error log are accepted, but ignored.

v The CMTRTS call returns a product_specific_error when issued for APPC/MVS
conversations that cross a VTAM network. For more information, see the section
on migration actions for application development in z/OS MVS Migration.

v APPC/MVS does not support conversations with a sync_level characteristic of
CM_SYNC_POINT.

v The character set restriction on LU names, VTAM mode names, and TP names
differs slightly from those prescribed in the CPI-C Reference.

LU names and mode names can contain uppercase alphabetic, numeric and
special characters ($, @, #), and must begin with an alphabetic or special
character. IBM recommends that special characters be avoided because they
display differently depending on the language code page in use.

TP names may contain any character from the 00640 character set except a
blank. (Blanks can still be used as a trailing pad character, but are not
considered part of the string). IBM recommends that the asterisk (*) be avoided
in TP names because it causes a list request when entered on panels of the
APPC administration dialog.

See “Appendix A. Character Sets” on page A-1 for a table showing the allowable
characters.

Using CPI Communications

3-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Invocation Details for CPI Communications
Calls to CPI Communications are supported from programs using the following
high-level languages on MVS:
v C
v COBOL
v CSP (Application Generator)
v FORTRAN
v PL/I
v REXX
v RPG

Interface Definition Files (IDFs) for CPI-C Calls
IDFs (also called pseudonym files or headers) for the CPI Communications calls are
provided as described below. The IDFs define calls, parameters, and variable
values.

As shown in Table 3-1, the CPI-C IDFs provided by APPC/MVS are not named
according to the CPI-C file names, which are described in CPI-C Reference. IBM
recommends that you rename IDFs to the CPI-C name when you place the IDF in a
high-level language macro library.

APPC/MVS provides the following IDFs:

Table 3-1. IDFs Provided by APPC/MVS for CPI-C Calls

Language In Member CPI-C file name

C ATBCMC in SYS1.SIEAHDR.H CMC

COBOL ATBCMCOB in SYS1.SIEAHDR.H CMCOBOL

FORTRAN ATBCMFOR in SYS1.SIEAHDR.H CMFORTRN

PL/I ATBCMPLI in SYS1.SIEAHDR.H CMPLI

REXX ATBCMREX in SYS1.SIEAHDR.H CMREXX

RPG ATBCMRPG in SYS1.SIEAHDR.H CMRPG

The ATBCMC IDF is also shipped in the z/OS UNIX System Services HFS directory
/usr/include.

The CSP interface definition file CMCSP COPY is shipped by Cross System
Product, Release 3.3.0 and above.

Transaction Program (TP) Environment
Any MVS program that calls APPC services (including CPI Communications
routines), or is attached by an APPC/MVS LU in response to an inbound allocate
request, is considered to be an APPC/MVS transaction program. To call CPI
Communications routines, a transaction program must meet the following
requirements.

Requirements for TPs in Problem-Program State
The following requirements apply to TPs that are written to run in problem-program
state:

v APPC/MVS services must be invoked in 31-bit addressing mode

v All parameters of APPC/MVS services must be addressable by the caller and in
the primary address space.

Using CPI Communications

Chapter 3. Using CPI Communications 3-3

If you are writing a TP to run in problem program state, you can skip over General
Requirements and continue reading at “Calling CPI Communications Routines”.

General Requirements
The following general requirements apply to CPI Communications calls invoked by
any TP but include requirements (such as cross memory allowed and locks not
allowed) that are only of concern to TPs running in supervisor state or PSW key
0-7.

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task or SRB mode

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: All parameters must be addressable by the caller
and in the primary address space.

Transaction programs that call CPI Communications services while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the section about
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

High-Level Language Compilers
Table 3-2 shows a partial list of high-level language compilers that support CPI
Communications calls on MVS/ESA. Calls can be made with other compiler levels
and other compiler products that meet the preceding requirements and the linkage
conventions described in “Calling CPI Communications Routines”. Note that the
requirement for 31-bit addressing may limit some language functions that you can
use.

Table 3-2. Some High-Level Language Compilers for CPI Communications Calls on z/OS

Language Compiler

C C/370 Compiler Version 1, Release 2.0

COBOL COBOL for OS/390 & VM Version 2

FORTRAN VS FORTRAN Compiler Version 2, Release 6 0

PL/I PL/I for MVS & VM Version 1, Release 1

RPG RPG/370 Version 1, Release 1.0

Calling CPI Communications Routines
All CPI Communications calls have a general calling format as follows:

CALL routine_name (parameters,return_code)

Some specific calling formats for languages that can invoke the services are:

COBOL CALL “routine_name” USING parm1,parm2,...return_code

FORTRAN CALL routine_name (parm1,parm2,...return_code)

C routine_name (parm1,parm2,...return_code)

Using CPI Communications

3-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

PL/I CALL routine_name (parm1,parm2,...return_code)

REXX ADDRESS CPICOMM “routine_name parm1 parm2 ...return_code”

For REXX, enclose the routine name and all parameters within one
pair of single or double quotes. Parameters must be initialized to
appropriate values. The host command environment resolves the
parameter values. For more information, see z/OS TSO/E REXX
Reference.

RPG For RPG, begin the CPI communications call in column 28, and
enter the routine name in columns 33-42. For each parameter, list
the PARM keyword in column 28 and the parameter value in
columns 43-48, as follows:

C *OS CALL “routine_name”
C PARM parm1
C PARM parm2...
C PARM return_code

Any high-level language that conforms to the following linkage conventions may be
used to issue CPI Communications calls on MVS:

v Register 1 must contain the address of a parameter list, which is a list of
consecutive words, each containing the address of a parameter to be passed.
The last word in this list must have a 1 in the high-order (sign) bit.

v Register 13 must contain the address of an 18-word save area.

v Register 14 must contain the return address.

v Register 15 must contain the entry-point address of the service being called.

v If the caller is running in AR ASC mode, access registers 1, 13, 14, and 15 must
all be set to zero.

On return from the service, general and access registers 2 through 14 are restored
(registers 0, 1 and 15 are not restored).

Parameter Descriptions
All of the parameters of the callable services are required, positional parameters.
Some programming languages let you pass literal values in these parameters. None
of the parameters are optional.

APPC/MVS checks all parameters for valid values, regardless of whether the
parameters are used in call processing. For example, the locks parameter on the
Prepare_to_Receive service must contain either a 0 or 1 (the only valid values),
otherwise APPC/MVS rejects the request to change to receive state with a
program_parameter_check return code, regardless of what value is supplied in
Prepare_to_receive_type.

See CPI-C Reference for descriptions of the parameters of the CPI
Communications services.

Required Modules
Transaction programs using CPI Communications on MVS, other than those written
in REXX, must either:

v Be link-edited with the load module ATBPBI, which is provided in SYS1.CSSLIB,
or

v Issue the MVS LOAD macro for the APPC/MVS service to obtain its entry point
address, then use that address to call the APPC/MVS service.

Using CPI Communications

Chapter 3. Using CPI Communications 3-5

Conversation States
The conversation states for CPI Communications differ slightly from those used for
MVS-specific TP services. For complete descriptions of the conversation states that
apply to the CPI Communications calls, see CPI-C Reference Chapter 2 and
Appendix C.

Performance Considerations
The relative performance speed of APPC/MVS callable services varies depending
on the functions that the callable service performs. For example, services that call
VTAM or cause the movement of data buffers involve a greater number of internal
instructions. For an overview of performance considerations for calls to CPI
Communications, see Table 3-3. For a similar chart of performance considerations
for the MVS TP services, see Table 4-1 on page 4-14.

Table 3-3. Performance Considerations for APPC/MVS CPI Communications Calls

CPI Call
Calls
VTAM

Causes
DASD

I/O

Causes
buffer
moves

Calls
RACF

Creates
SMF

record

CMINIT No Sometimes(1) No Sometimes(3) No

CMALLC Yes No No RACROUTE=
TOKENXTR,
TOKENMAP

No

CMCFM Yes No No No No

CMCFMD Yes No No No No

CMDEAL Yes No No No No

CMFLUS Yes No No No No

CMACCP No No No No No

CMECS No No No No No

CMECT No No No No No

CMEMN No No No No No

CMEPLN No No No No No

CMESL No No No No No

CMPTR Yes No No No No

CMRCV Yes No Yes No No

CMRTS Yes No No No No

CMSEND Yes No Yes No No

CMSERR Yes No No No No

CMSCT No No No No No

CMSxxx(2) No No No No No

Notes:

1. Might read from the side information file. (Entries are cached for quick retrieval after first reference).

2. All other CPI Communications Set_xxx calls.

3. Calls RACF only to verify access to side information file.

Using CPI Communications

3-6 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Chapter 4. The APPC/MVS Programming Interface

Like CPI Communications, APPC/MVS’s MVS-specific services let your programs
communicate with other programs on the same z/OS system, OS/390 systems, or
other operating systems in an SNA network. Unlike CPI Communications, programs
using the MVS-specific services are not portable to other systems. MVS-specific
services make use of the MVS/ESA architecture, including data spaces and
asynchronous processing, and also provide TP scheduling options, server functions,
and test services.

The MVS-specific services are divided into the following categories:

TP Conversation Services
Provide access to all the conversation functions described in “The Elements
of Conversation” on page 2-3. This set of services is to be used by
transaction programs and has equivalent SNA LU 6.2 services and CPI
Communications routines.

Advanced TP Services
Provide access to more advanced transaction program interfaces, including
scheduling options and test services.

Allocate Queue Services
Provide access to LU 6.2 server functions, which allow you to direct
inbound allocate requests to server address spaces. These services have
no equivalent SNA LU 6.2 services or CPI Communications routines. The
APPC/MVS allocate queue services are described in z/OS MVS
Programming: Writing Servers for APPC/MVS.

System Services
Provide access to system services not normally used by transaction
programs, but used by other MVS components, management subsystems,
and transaction schedulers. The APPC/MVS system services are described
in z/OS MVS System Messages, Vol 3 (ASB-BPX).

APPC/MVS TP Conversation Services
The APPC/MVS TP conversation services implement the APPC conversation
functions in an MVS-specific way. The APPC/MVS TP conversation services
correspond to the SNA models (verbs) described in the SNA Transaction
Programmer’s Reference Manual for LU 6.2. The MVS TP conversation services let
you combine many of the APPC conversation functions (Send, Flush, and so on) on
a single call. They also support special features of the MVS architecture, such as
allowing data buffers to reside in MVS data spaces, and providing asynchronous
notification by event control block (ECB) when a service completes.

APPC/MVS TP Conversation States
The following is a list of the conversation states that apply to the APPC/MVS TP
conversation services:

State Description

Reset The initial state, before communications begin.

Send The program is able to send data or request a confirmation on this
conversation.

© Copyright IBM Corp. 1991, 2001 4-1

Receive
The program is able to receive data on this conversation.

Send-Pending
The program has received both data and send capability on the same call.

Confirm
A confirmation request has been received on this conversation; that is, the
partner program issued a Confirm call and is waiting for the local program
to issue Confirmed. After responding with a confirmation, the local program
enters Receive state.

Confirm-Send
A confirmation request and permission-to-send have both been received on
this conversation; for example, the partner program issued a
Prepare_To_Receive call with the prepare_to_receive_type set to
prep_to_receive_sync_level and the sync_level for this conversation is
confirm. After responding with a confirmation, the local program enters
Send state.

Confirm-Deallocate
A confirmation request and deallocation notification have both been
received on this conversation; that is, the partner program issued a
Deallocate call with the deallocate_type set to deallocate_sync_level and
the sync_level for this conversation is confirm. After responding with a
confirmation, the conversation is deallocated.

Defer-Receive
The program enters Receive state after a synchronization call completes
successfully. The synchronization call may be a Commit, Flush, or Confirm
call.

Defer-Deallocate
The program has requested that the conversation be deallocated after a
syncpoint operation has completed. The conversation is not deallocated
until a successful syncpoint operation takes place.

Sync-Point
The program issued a Receive call and was given a return_code of OK and
a status_received of TAKE_COMMIT. After a successful Commit operation,
the program enters Receive state.

Sync-Point-Send
The program issued a Receive call and was given a return_code of OK and
a status_received of TAKE_COMMIT_SEND. After a successful Commit
operation, the program enters Send state.

Sync-Point-Deallocate
The program issued a Receive call and was given a return_code of OK and
a status_received of TAKE_COMMIT_DEALLOCATE. After a successful
Commit operation, the conversation is deallocated, and the program enters
Reset state.

These conversation states apply to the individual MVS TP conversation services as
shown in “Appendix C. APPC/MVS Conversation State Table” on page C-1.

Using APPC/MVS Services

4-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Guide to the Conversation Services
APPC/MVS provides the following conversation callable services that TPs use to
communicate in conversations. These services apply to both mapped and basic
conversations, as specified on the Conversation_type parameter of the Allocate
service.

Allocate
Allocate (start) a conversation with a partner TP.

Confirm
Request a confirmation, for example, that the partner has successfully
received data that was sent.

Confirmed
Send a confirmation, in response to a request for confirmation.

Deallocate
Deallocate (end) a conversation.

Error_Extract
Return detailed information about errors indicated by APPC/MVS return
codes.

Flush Flush the LU’s data buffer, forcing buffered data to be sent.

Get_Attributes
Get attributes of a specified conversation.

Get_Conversation
Get the current conversation and its attributes.

Get_TP_Properties
Get TP properties (TP name, LU name, user ID, profile).

Get_Type
Get the type of conversation (basic or mapped).

Post_on_Receipt
Receive asynchronous notification when data or status on particular
conversation becomes available.

Prepare_to_Receive
Prepare to receive data (change to Receive state).

Receive_Immediate
Receive data immediately, including any buffered data.

Receive_and_Wait
Receive and wait for data to arrive.

Request_to_Send
Request to send data (change to Send state).

Send_Data
Send data to the partner.

Send_Error
Send error notification to the partner when the caller detects an error.

Set_Syncpt_Options
Change the APPC/MVS defaults that control syncpoint processing for
protected conversations.

Using APPC/MVS Services

Chapter 4. The APPC/MVS Programming Interface 4-3

For reference information about these services, including syntax and parameter
descriptions, see “Chapter 8. APPC/MVS TP Conversation Callable Services” on
page 8-1.

The following sections describe how to use these services in a TP conversation.

Starting a Conversation
To start a conversation with a partner TP, a local TP calls the Allocate service. On
the call to Allocate, specify the conversation type (basic or mapped) and the
destination (a symbolic destination name or explicit values for the partner TP name,
LU name, and session mode). Also specify whether or not the conversation will
include confirmation requests (a sync_level of none or confirm).

To protect against unauthorized conversations, Allocate must include the security
information that the partner expects. Specify which of the following levels of security
information you are providing:

Security_none
Specifies that no user ID, password, or profile (RACF group name) is
passed for verification.

Security_same
Specifies that the same user ID and possible profile name that were used
to allocate the local program are being passed on the current allocate call.

Security_pgm
Specifies that a user ID, password, and profile name are being provided for
the partner LU to verify. If surrogate authorization is used, only the user ID
is required. For more information, see z/OS MVS Planning: APPC/MVS
Management.

Asynchronous notification: On the Allocate call, you can specify an ECB to be
posted when the service is complete. See “Using Asynchronous Services” on
page 4-10 for more information about asynchronous notification for this and other
services.

Authorized parameters: If your TP is running in supervisor state or PSW key 0-7,
it can also specify the following on Allocate:
v A RACF user token (UTOKEN) to dictate the partner’s security environment
v The TP_ID to be associated with the conversation.

Accepting a Conversation
When an inbound allocate request arrives for a TP under APPC/MVS control,
APPC/MVS verifies that the request passes any security requirements for the
partner LU and TP, and accepts or rejects the request accordingly. If accepted,
APPC/MVS forwards the request to the transaction scheduler that initiates the
partner TP. The partner TP must call the Get_Conversation service before any other
APPC service to obtain information about the conversation. That returned
information includes the conversation ID, conversation type, LU name, mode name,
and sync_level. (If you are using an APPC/MVS server, you can use the
Receive_Allocate service to retrieve the oldest allocate request from a particular
allocate queue. See z/OS MVS Programming: Writing Servers for APPC/MVS for
more information about the Receive_Allocate service.)

Obtaining Information about the Conversation
After accepting the conversation, the partner TP can then use the conversation ID
as input to these services to obtain more information about the conversation:

Using APPC/MVS Services

4-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

|
|
|
|

Get_Type
Tells the caller what type of conversation is in effect (basic or mapped). This
service allows a TP to handle requests from callers who might specify either
type of conversation. The TP can use conditional logic to send and receive
basic or mapped data depending on the type in use.

Get_Attributes
Tells the caller the LU, mode name, sync_level, the conversation correlator,
and other information that applies to the caller in the current conversation.
This allows the TP to run under different combinations of the above, using
conditional logic to function appropriately. For example, a partner TP can
use the conversation correlator, which uniquely identifies a conversation, to
correlate requests with responses from an alternate transaction scheduler.

When a partner TP allocates a conversation with a TP running on MVS, the
system on which the partner TP is running generates the conversation
correlator, and sends the correlator to APPC/MVS in the FMH-5 for the
Allocate request. After the scheduler processes the request, the scheduler
sends the correlator back to the partner TP as data over the conversation.
The partner TP can then correlate the original request with the response
from the scheduler.

Note: When MVS is the partner system, it only generates unique
conversation correlators for syncpoint conversations. For all others,
MVS always provides a conversation correlator that has the value
zero.

Figure 4-1 on page 4-6 shows an example of how a scheduler can process
a conversation correlator. The figure illustrates the following scenario:

1. The partner TP allocates a conversation with a local TP on MVS. The
partner system sends the conversation correlator to APPC/MVS in the
FMH-5 that contains the request.

2. The partner TP calls the Send_Data service to put a block of data in a
buffer for sending.

3. The partner TP calls the Get_Attributes service to receive the
conversation correlator assigned to the conversation.

4. The partner TP calls the Deallocate service to end the conversation
and force the LU to send the buffered data.

5. The transaction scheduler receives the request and schedules the
transaction. The scheduler receives the correlator from the IXCMSGI
message buffer.

6. The scheduler allocates a conversation back to the partner TP.

7. The scheduler sends the conversation correlator to the partner TP as
data over the conversation. The scheduler also sends the message
that results from the execution of the TP.

8. The scheduler calls the Deallocate service, with a Deallocate_type of
Confirm, to end the conversation and force the LU to send the buffered
data.

9. The partner TP receives the conversation correlator.

10. The partner TP validates that the conversation correlator that it is the
same as the correlator returned on the call to Get_Attributes in step 3
above.

11. The partner TP calls the Confirmed service to send a confirmation
reply to the transaction scheduler.

Using APPC/MVS Services

Chapter 4. The APPC/MVS Programming Interface 4-5

In Figure 4-1, “CC” indicates the conversation correlator.

Getting Current TP Properties
A newly allocated TP can call the Get_TP_Properties service to get more
information about itself, including:
v Own TP name
v Own LU name
v User ID passed on the allocate request
v Profile passed on the allocate request
v LUW_ID
v Options for syncpoint processing that are in effect for protected conversations.

Get_TP_Properties is useful when a TP might run in different environments, for
example, by being defined in different TP profiles to different MVS LUs, possibly
under different TP names. Get_TP_Properties lets such a TP retrieve the name and
LU under which it is running in a given instance. Get_TP_Properties also returns
the LU work identifier (LUW_ID) associated with the TP, and the user ID and profile
that account for the TP’s current security environment.

Changing Syncpoint Options for Protected Conversations
When your installation enables APPC/MVS support for protected conversations,
certain system defaults are in effect for each TP and its protected conversations.
These defaults govern the way APPC/MVS interacts with other resource managers,
and the system syncpoint manager (RRS), to coordinate resource recovery. This
interaction adheres to the two-phase commit protocol, which is described in z/OS
MVS Programming: Callable Services for HLL.

Depending on the processing your TP and its partner TPs perform, you might want
to change these default values. For example, you might change the value of the
Wait_For_Outcome option. The default for this option is NO; changing it to YES
allows a syncpoint operation to complete more quickly in the event of a session

LU 6.2 Partner TP Transaction Scheduler

Allocate

Send_Data

Get_Attributes (receive CC)

Deallocate Schedule transaction

FMH-5

FMH-5

Allocate back
to partner TP
Allocate back
to partner TP

Send_Data (output_msg,
CC from inbound allocate)
Send_Data (output_msg,
CC from inbound allocate)

Deallocate with
Deallocate_type=Confirm
Deallocate with
Deallocate_type=Confirm

Get_Conversation

Receive data (including CC)

Compare CC with CC from
Get_Attributes call
Compare CC with CC from
Get_Attributes call

Confirmed

Figure 4-1. Example Use of the Conversation Correlator

Using APPC/MVS Services

4-6 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

failure. The potential disadvantage is that, after your TP issues a Commit or
Backout call, APPC/MVS might return control before it knows the outcome of the
syncpoint operation.

An APPC/MVS TP, server, or alternate transaction scheduler may change syncpoint
option values through a call to the Set_Syncpt_Options service.
“Set_Syncpt_Options” on page 8-124 describes the options you may change, their
default values, and other requirements for successfully calling this service.

Sending and Receiving Data
When a conversation is established, the local (calling) program enters Send state
and its partner enters Receive state. The programs can then use the following
services to send and receive data:
v Send_Data
v Receive_and_Wait
v Receive_Immediate

Support for Data Spaces: The above services allow data buffers to reside in
MVS data spaces. To designate a data space, provide an access list entry token
(ALET) along with the buffer address to designate the data space in which the
buffer resides. APPC/MVS accepts any ALET that:

v Is a public ALET in the dispatchable unit access list (DU-AL) of the work unit that
made the request

v Does not designate the secondary address space.

Parameter lists and parameters other than data buffers must reside in the caller’s
primary address space.

A sending program can use the send_type parameter to send information and data,
and to combine operations, thus saving extra calls to APPC/MVS. Possible values
of send_type are:

Buffer_data
Tells APPC/MVS to put the data in its own buffers until a sufficient quantity
is accumulated.

Send_and_flush
Tells APPC/MVS to send the data immediately without buffering it.

Send_and_confirm
Tells APPC/MVS to send the data immediately along with a request for
confirmation.

Send_and_prepare_to_receive
Tells APPC/MVS to send the data immediately along with send control, to
put the partner in Send state.

Send_and_deallocate
Tells APPC/MVS to send the data immediately along with a notification that
the conversation is deallocated.

The receiving program learns about the specified send_type and other requests for
action by a value returned in the status_received parameter on its latest
Receive_Immediate or Receive_and_Wait call:

Send_received
Indicates that the partner has entered Receive state, placing the local
program in Send state.

Using APPC/MVS Services

Chapter 4. The APPC/MVS Programming Interface 4-7

Confirm_received
Indicates that the partner has requested a confirmation.

Confirm_send_received
Indicates that the partner has called the prepare_to_receive function and
requested confirmation.

Confirm_dealloc_received
Indicates that the partner has called the deallocate function and requested
confirmation. For syncpoint conversations the following can be received:
TAKE_COMMIT, TAKE_COMMIT_SEND, and
TAKE_COMMIT_DEALLOCATE.

The receiving program can specify a maximum amount of data to be received and,
if the conversation is basic, whether to fill the buffer to the maximum or to the last
complete logical record that fits. When data arrives, APPC returns a data_received
parameter to tell the receiver if the buffer contained an incomplete record.

Requesting Permission to Send
TPs in Receive state can call Request_to_send to request permission to send data,
for example, in response to something they received. APPC/MVS notifies the
partner TP by passing request_to_send_received as a returned parameter on the
partner’s next Send, Receive, or Confirm call to APPC/MVS.

Granting Permission to Send
When a TP in Send state receives request_to_send_received as a returned value
on one of its calls to APPC/MVS, the TP can ignore the request, or grant the
request by calling one of the following services:
v Receive_and_Wait
v Prepare_to_Receive

Any one of the above services puts the caller in Receive state and its partner in
Send state. Unlike Receive_and_Wait, Prepare_to_Receive does not require a
receive buffer as input.

Requesting Confirmation
When a conversation was allocated with confirmation allowed (sync_level was set
to confirm or syncpt), a sending TP can request confirmation, either on the
Send_Data call (with send_type set to Send_and_confirm) or by calling the Confirm
service. The partner is notified of the confirmation request by a value returned in
the status_received parameter on its next receive call. The partner can then provide
the confirmation by calling the Confirmed service, or reject the confirmation by
calling the Send_Error service, the Deallocate Type(Abend) service, or (if the
conversation is syncpt) with a Backout request.

Returning Error Information
When APPC/MVS finds an error in an APPC/MVS conversation, it returns an error
return code. Because APPC/MVS return codes are “architected”, meaning that they
are common to every system that can participate in a SNA network, they provide
only general descriptions of errors.

To obtain more detailed descriptions of errors that occur in APPC/MVS
conversations, your application can call the Error_Extract service. Error_Extract
returns reason codes and messages that further describe errors indicated by
APPC/MVS return codes. If your TP is involved in a conversation with a TP that is
running on a partner system, Error_Extract returns error log information and a
product set identifier, if the partner system does all of the following:

Using APPC/MVS Services

4-8 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v Supports the error log function (for more information, see the section on error log
variables in z/OS Communications Server: SNA Programmer’s LU 6.2 Guide)

v Detects an error in a conversation with an APPC/MVS TP

v Sends error log information to APPC/MVS.

See “Chapter 6. Diagnosing Problems with APPC/MVS TPs” on page 6-1 for
information about how to use the Error_Extract service.

Sending Error Notification
When a TP encounters an error in its processing or cannot grant a requested
confirmation, the TP can call the Send_Error service to notify its partner. A TP can
call Send_Error from Send or Receive state. The partner receives notice of the
error by return code on its next call to APPC/MVS.

If the TP that detects the error is in Send-pending state (has just received data and
send control on the same call), the TP needs to specify where it found the error: in
data that it received from the partner or in data it was preparing to send. To do so,
specify a value of receive_error or send_error in the error_direction parameter of
the Send_Error service.

Ending Conversations
When your TP has finished communicating with its partner, deallocate the
conversation by calling the Deallocate service, or the Send_Data service with a
send_type of send_and_deallocate. On the deallocate_type parameter of the
Deallocate service, specify one of the following:

Deallocate_sync_level
Deallocates based on the sync_level set by the allocate function:

v If sync_level is none (no confirmation), performs the function of the flush
service and deallocates the conversation normally

v If sync_level is confirm, requests a confirmation; if granted, deallocates
the conversation normally.

v If sync_level is syncpt, defers the deallocation until the program issues a
Commit call. Upon successful completion of the Commit call, the system
deallocates the conversation.

Deallocate_flush
Performs the function of the flush service, and deallocates the conversation
normally.

Deallocate_confirm
Requests a confirmation:
v If granted (Confirmed), deallocates the conversation normally
v If rejected by Send_Error, the conversation continues.

Deallocate_abend
Performs the function of the flush service and deallocates the conversation
abnormally.

For more information about the deallocate types, see the explanations for return
codes 17 and 18 under “Appendix B. Explanations of Return Codes for CPI
Communications Services” on page B-1. The partner is notified of the deallocate
request by status_received parameter or by return code.

As a result of the deallocate function, both partners go into Reset state and the
conversation ends.

Using APPC/MVS Services

Chapter 4. The APPC/MVS Programming Interface 4-9

Using Asynchronous Services
TPs can use most of the APPC/MVS TP conversation services asynchronously by
specifying the address of an event control block (ECB) on the Notify_Type
parameter. If APPC/MVS accepts the request for asynchronous processing, it gives
a return code of zero for the service, and the TP can continue other processing
without waiting for the service to complete. When all parameters are returned and
the service completes, APPC/MVS notifies the TP by posting the ECB.

By contrast, when you call an APPC/MVS service synchronously (by setting the
Notify_Type parameter to a value of none), your TP waits for the service to
complete. Your TP regains control when APPC/MVS passes a return code and any
other returned parameters from the service.

All conversation services available on synchronous calls are available on
asynchronous calls as well.

When specified on the Notify_Type parameter, the ECB must be cleared to zero
and meet all requirements for the POST macro. When the ECB is posted to indicate
that asynchronous processing is complete, the completion code in the ECB is the
return code for the service. All input parameters, except for data buffers, are
processed before return to the TP, so that the TP is free to use these areas on
return without affecting the asynchronous processing. However, data buffers passed
as input, and all output parameters, are accessed and manipulated directly by the
asynchronous processing, and therefore should not be referenced or modified by
the TP until it has been notified that call processing is complete.

APPC rejects any service call from a conversation for which an asynchronous call
was previously issued and did not complete. The only exceptions are Deallocate
(ATBDEAL) calls with a deallocate_type of ABEND. Those calls are accepted when
the conversation has an outstanding asynchronous call.

The asynchronous capability is recommended for the following types of APPC/MVS
transaction programs:

v Multiprocessing transaction programs

v Transaction programs that cannot afford to be suspended

v Transaction programs processing multiple conversations in a single dispatchable
unit.

The asynchronous capability is available through the Notify_type parameter on the
following TP conversation services:
v Allocate_Conversation
v Confirm
v Confirmed
v Deallocate_Conversation
v Flush
v Prepare_to_Receive
v Receive_and_Wait
v Request_to_Send
v Send_Data
v Send_Error

Invoking an authorized command or program in a TSO/E session while any
asynchronous notifications from APPC/MVS callable services are outstanding is not
supported. In addition, asynchronous APPC/MVS calls are not supported across a
job step boundary.

Using APPC/MVS Services

4-10 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Using the Asynchronous_Manager Service: You can call the
Asynchronous_Manager service to determine whether there are any asynchronous
APPC/MVS calls outstanding in an address space, and if necessary, to deallocate
any conversations that have asynchronous calls outstanding. For more information,
see “Identifying and Deallocating Conversations with Outstanding Asynchronous
Requests” on page 4-23.

Obtaining Asynchronous Notification of Data to be Received
To be notified asynchronously when data or status is ready to be received on a
conversation, use either of the following services:
v Post_on_Receipt
v Receive_and_Wait (with the Receive_Length parameter set to zero).

APPC/MVS posts an ECB specified by the caller when data or status, or both, is
available to be received.

The advantage of using Post_on_Receipt is that, unlike Receive_and_Wait, it does
not tie up the conversation while it is processed. The caller is free to call other
conversation services on the same conversation (such as Request_to_Send) while
APPC/MVS processes the Post_on_Receipt request asynchronously.
Post_on_Receipt can be called on basic conversations only.

The advantage of Receive_and_Wait is that it returns more information (such as the
Status_Received or Data_Received parameters) than Post_on_Receipt. With
Post_on_Receipt, you must follow the call with a call to Receive_and_Wait or
Receive_Immediate to obtain this information. Receive_and_Wait can be called on
both basic and mapped conversations.

Both methods are described in the following sections.

Using Post_on_Receipt: Post_on_Receipt notifies the caller (through an ECB the
caller specifies) for the following situations:

v A complete logical record is available to be received from the partner program

v Conversation status (control information) is available

v A nonzero return code is available to be received because of an action taken by
the partner program (such as deallocating the conversation).

When Post_on_Receipt posts the specified ECB, the caller can determine which of
the preceding information is available by calling the Receive_and_Wait or
Receive_Immediate service and checking the returned parameters.

The following is a pseudocode example of calling the Post_on_Receipt service:

Using APPC/MVS Services

Chapter 4. The APPC/MVS Programming Interface 4-11

The ECB specified by the ECB_Address parameter is posted when data or status,
or both, is available to be received.

Your call to Post_on_Receipt remains in effect until the specified ECB is posted, or
the call is cancelled. Thereafter, to obtain subsequent notification of data or status
to be received, issue a new call to the Post_on_Receipt service.

Using Receive_and_Wait with a Receive_Length of Zero: To be notified
asynchronously when there is data ready for you to receive on a conversation, you
can also use an asynchronous Receive_and_Wait call with a Receive_Length of
zero. The following is a pseudocode example of calling the Receive_and_Wait
service, with the key parameters indicated by arrows:

<issued from receive state>

ECB=0 /* ECB cleared to zero */

CALL ATBPOR2
(Conv_ID, /* In - Conversation ID */
ECB_Address, /* In - Address of ECB */
Return_Code); /* Out - Return Code */

If Return_Code = 0 THEN
<do other work, such as call Request_To_Send>
...
WAIT for ECB to be posted...

Figure 4-2. Obtaining Asynchronous Notification With Post_on_Receipt

Using APPC/MVS Services

4-12 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

The ECB specified by the Notify_Value parameter is posted when data, status, or
both, are available to be received. No buffer need be specified, because no data is
returned on this call (you can specify a “dummy” variable). When the ECB is
posted, the output parameters are filled in (Status_Received, Data_Received,
Req_To_Send_Received, and Return_Code). If there is data to be received, you
can issue a Receive_Immediate or another Receive_and_Wait call to receive the
data. This subsequent call could be with CPI Communications as well.

To obtain subsequent notifications of data to be received, issue a new
asynchronous Receive_and_Wait call after each receipt of data.

Setting a Timeout Value for Potential Network Delays
APPC/MVS uses the VTAM APPCCMD macro to communicate with partner
applications. Sometimes a VTAM APPCCMD request does not complete, for
example because of a network delay or a delay at the partner LU. If this happens,
the APPC/MVS transaction program can hang while waiting for control to be
returned by APPC/MVS. By setting a time limit for VTAM APPCCMD requests, you
can avoid such hangs and regain control of the conversation.

If the time limit is reached before the VTAM APPCCMD request completes and
returns control to APPC/MVS, the conversation will be terminated by APPC/MVS
and the caller of the conversation callable service will regain control. If the
conversation call was issued with a Notify_Type=ECB (asynchronous processing),
the specified ECB will be posted when the time limit is reached.

DECLARE
Conv_Id CHAR(8), /* Conversation ID */
Fill_Value FIXED, /* Fill Value */
Receive_Length BIT(32), /* Receive Length */
Buffer_ALET BIT(32), /* Buffer Access Token */
Dummy_Buffer CHAR(1), /* Dummy buffer */
Status_Received FIXED, /* Status Received */
Data_Received FIXED, /* Data Received */
Req_to_Send_Received FIXED, /* Request to Send Received */
My_Ecb FIXED, /* ECB to post */
Return_Code FIXED; /* Return code */

DECLARE 1 Notify_Value, /* Eight-Byte structure */
2 Notify_Type FIXED, /* Asynchronous notify type */
2 My_Ecb_Address PTR(31); /* Address of My_Ecb */

Receive_Length = 0; /* Initialize Receive Length */
Notify_Type = atb_notify_type_ecb; /* Asynchronous notification */
My_Ecb_Address = ADDR(My_Ecb); /* Get address of ECB */

CALL ATBRCVW
(Conv_Id, /* In - Conversation ID */
Fill_Value, /* In - Fill Value */

====> Receive_Length, /* In-out - Receive Length */
Buffer_ALET, /* In - Buffer ALET */

====> Dummy_Buffer, /* Out - Buffer */
Status_Received, /* Out - Status Received */
Data_Received, /* Out - Data Received */
Req_To_Send_Received, /* Out - Req To Send Received */

====> Notify_Value, /* In - Notify type */
Return_Code); /* Out - Return Code */

Figure 4-3. Obtaining Asynchronous Notification With Receive_and_Wait

Using APPC/MVS Services

Chapter 4. The APPC/MVS Programming Interface 4-13

To set a time limit, use the Set_TimeOut_Value service or the Timeout_value
parameter on the new version of the Allocate service (ATBALC5).

You can invoke the Set_Timeout_Value service any time after the conversation is
successfully established. You can also invoke the Set_Timeout_Value service to
alter a previously set timeout value. All subsequent APPC/MVS or CPIC callable
services will be limited to the Time_out value specified on the Set_Timeout_Value or
allocate call.

You can use the Version_Service to determine whether Set_Timeout_Value or the
new version of the Allocate service is available on the current system. An
application can invoke Set_Timeout_Value or the new version of Allocate when the
Callable_service_version_number returned from the Version_Service is 5 or higher.

If an APPC/MVS or CPIC callable service is interrupted because a timeout limit was
reached, the interrupted conversation call will return one of the following return
codes:

v For syncpoint conversations: Resource_Failure_Retry_BO return code or, if a
Resource_Failure_Retry_BO return code is not possible, a
Product_Specific_Error return code.

v For other conversations: Resource_Failure_Retry or, if a Resource_Failure_Retry
return code is not possible, a Product_Specific_Error return code.

v For the Deallocate service issued with the Deallocate_type parameter set to
Deallocate_abend, the OK return code.

If a conversation is terminated during time-out processing, any subsequent
APPC/MVS or CPIC callable service will fail with a Program_Parameter_Check
return code.

If an error occurs, invoke the Error_Extract service to get a detailed description of
the error. If API trace was started for the application, then a detailed error message
will also be captured in the trace data set.

Performance Considerations for Conversation Services
The relative performance of APPC/MVS callable services varies depending on the
functions that the callable service performs. For example, services that call VTAM
or cause the movement of data buffers involve a greater number of internal
instructions. For an overview of performance considerations for individual
APPC/MVS TP callable services, see Table 4-1.

Table 4-1. Performance Considerations for MVS TP Callable Services

APPC/MVS Service Calls
VTAM

Causes
DASD

I/O

Causes
buffer
moves

Calls
RACF

Creates
SMF

record

Allocate Yes Sometimes(1) No RACROUTE=
TOKENXTR,
TOKENMAP

No

Confirm Yes No No No No

Confirmed Yes No No No No

Deallocate Yes No No No No

Error_Extract No No No No No

Extract_Information No No Yes No No

Using APPC/MVS Services

4-14 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 4-1. Performance Considerations for MVS TP Callable Services (continued)

APPC/MVS Service Calls
VTAM

Causes
DASD

I/O

Causes
buffer
moves

Calls
RACF

Creates
SMF

record

Flush Yes No No No No

Get_Attributes No No No No No

Get_Conversation No No No No No

Get_TP_Properties No No No RACROUTE=
TOKENXTR,
TOKENMAP

No

Get_Transaction No No No RACINIT SMF 33

Get_Type No No No No No

Post_on_Receipt No No No No No

Prepare_to_Receive Yes No No No No

Receive_Immediate Yes No Yes No No

Receive_and_Wait Yes No Yes No No

Register_Test No Yes (2) No RACROUTE=
TOKENXTR

No

Reject_Conversation Yes No No No No

Request_to_Send Yes No No No No

Return_Transaction No No No RACINIT SMF 33

Send_Data Yes No Yes No No

Send_Error Yes No No No No

Set_Conv_Accounting_Info No No No No No

Set_Syncpt_Options No No No No No

Unregister_Test No Yes (2) No RACROUTE=
TOKENXTR

No

Notes:

1. Might read from the side information file.

2. Modifies the TP profile.

One general performance tip is to minimize the number of calls to APPC/MVS for
conversation services. Try to design a transaction program in such a way that it
causes the least amount of code execution in APPC/MVS as possible, without
overly complicating the program.

Each time APPC/MVS is called, APPC/MVS checks to see if the caller’s parameters
contain valid values. When possible, combine functions in a single call, and send
and receive large blocks of data. Some specific ways to do this are described in the
following suggestions.

v Send as much data as possible on all Send_Data calls, thus minimizing the
number of sends and receives.

v Use the type parameter on the Send_Data service to combine operations.

In APPC/MVS, a TP can combine other conversation operations, such as Flush,
Confirm, and Deallocate, with each Send_Data call. This can often save an extra
call to APPC.

v Minimize use of the Confirm service.

Using APPC/MVS Services

Chapter 4. The APPC/MVS Programming Interface 4-15

The Confirm service forces a transaction program to wait for an explicit
acknowledgement from the partner. Use the confirm functions only when
acknowledgement is required.

v Minimize use of the Request_to_Send and Prepare_to_Receive services.

When possible, the local and partner TPs should be written so that they are
aware of the current state of the conversation, and exchange their Send and
Receive states when appropriate. The state of the conversation is known at all
times, based on what call was issued and the return codes and indicators that
are returned. “Appendix C. APPC/MVS Conversation State Table” on page C-1
describes these states for each MVS TP service, indicator, and return code.
CPI-C Reference describes these states for each CPI Communications call.

v Minimize use of the Get_Type, Get_Attributes, and Get_TP_Properties services.

Your TPs should know most of this information already. If these services are
called, their returned values should be kept in local program variables for later
use.

v Use the Flush service judiciously.

The Flush function forces APPC/MVS to send the data in its internal buffers,
even though those buffers might not be full. Unless the partner needs the data
immediately, let APPC/MVS determine when it is most efficient to send the data.

If your TP calls a Send_Data service and then plans on calling no other
conversation services for a while, it should probably call the Flush service or
Send_Data with Send_Type of Flush to clear its buffers, so the data can be used
by the partner TP.

v Send one logical record per Send_Data call.

In basic conversations, send as much data as possible on each send, but use
only one LL (record length field) per call. Avoid splitting LL fields across calls.

v Receive as much data as possible on each Receive call.

Allocate a large storage area for incoming data, and receive as much data as
possible on each Receive_and_Wait or Receive_Immediate.

In basic conversations, specify a value of Buffer for the Fill parameter on
Receive_and_Wait and Receive_Immediate, instead of a value of LL.

v Use the deallocate_type of deallocate_flush on Deallocate calls.

The deallocate_type of deallocate_flush is faster than the other types on the
Deallocate service.

Advanced TP Services
In addition to conversation services, APPC/MVS provides advanced services that
you can use to extend, customize, and test TP processing. The advanced services
are specific to MVS and have no LU 6.2 or CPI-C equivalents. The advanced
services allow you to:
v Extract detailed scheduling and conversation information about a TP
v Add user data to SMF accounting records
v Use multi-trans scheduling to accept multiple conversations in sequence
v Reject inbound conversations if needed
v Test transaction programs in a non-APPC address space.

The following sections describe how to use these advanced TP services. For
reference information, including syntax and parameter descriptions, see “Chapter 9.
APPC/MVS Advanced TP Callable Services” on page 9-1.

Using APPC/MVS Services

4-16 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Extracting Detailed Scheduling and Conversation Information
With the Extract_Information service, APPC/MVS transaction programs can extract
detailed information about their own conversations and scheduling. If in supervisor
state or PSW key 0-7, they can extract conversation information about other TPs.

You can call the Extract_Information service from a TP to extract scheduling
information such as the transaction scheduler, the transaction initiator class, and the
TP schedule type under which the TP is running. You can also extract conversation
information, such as the total number of conversations in which the TP is involved,
the number of sends and receives it has performed, the unit of recovery identifier
(URID) for a protected conversation, and the total amount of data sent and
received.

TPs can save this extracted information in a data set for later analysis or use it
dynamically. For example, a TP can use the Extract_Information service to check
whether it is scheduled with the multi-trans schedule type and, if so, call the
Get_Transaction service to accept new conversation requests in sequence.

As input to the Extract_Information service, specify the type of information you want
to extract (scheduler, summary conversation, or specific conversation), the TP or
conversation involved (the caller’s or, if the caller is authorized, the TP_ID or
Conv_ID of another TP or conversation whose information you want), and a buffer
for the output. The buffer can be ALET-qualified, subject to the limits described in
“Support for Data Spaces” on page 4-7.

To access mappings of the information returned in the buffer that can be used by
assembler language programs, include the following mapping macros in the calling
TP:

ASBEXSCH
For scheduling information

ATBEXCON
For summary conversation information

ATBEXCOS
For specific conversation information

Adding User Data to Accounting Records
When either partner deallocates an APPC/MVS conversation, SMF writes a type 33,
subtype 2 record. SMF provides detailed information about both partners, their
associated LUs, and the amount of data transferred over the network.

TPs can write up to 255 bytes of user-defined data to these accounting records
through the Set_Conversation_Accounting_Information service. The user data also
appears in the user data field that the Extract_Information service returns when TPs
extract information about specific conversations.

You can use the user data field to charge resources to a specific conversation, or to
correlate outbound conversations to inbound conversations, perhaps by specifying a
conversation ID in the user data.

Using TP Schedule Types
The APPC/MVS transaction scheduler lets you assign transaction programs to a
schedule type of standard or multi-trans .

Using APPC/MVS Services

Chapter 4. The APPC/MVS Programming Interface 4-17

Using the Standard Schedule Type
When transaction programs are scheduled as standard (the default), APPC/MVS
initializes them for each inbound conversation request and ends them when they
finish processing. A transaction program scheduled as standard runs as shown in
Figure 4-4.

With standard scheduling, a transaction program’s resources are allocated and
deallocated for each inbound conversation request. Standard scheduling provides a
clean environment each time the TP is scheduled, and isolates TPs from each other
and from subsequent requests for the same transaction program. The standard
schedule type provides full security, data integrity, and basic performance for TPs
that are not invoked very frequently or do not require extensive allocation of
resources.

Using the Multi-Trans Schedule Type
The multi-trans schedule type causes a transaction program to remain active
between inbound conversations, with its resources available. Subsequent
conversation requests can use the same instance of the TP and avoid the overhead
of repeated resource allocation and deallocation.

Figure 4-5 on page 4-19 shows how a multi-trans program receives and processes
consecutive transaction requests. The multi-trans program is typically coded within
a multi-trans shell, an environment that performs initialization and termination
processing, surrounding the part of the TP that holds conversations. When a
multi-trans program is scheduled in response to an initial allocate request, the
multi-trans shell gets control first and allocates general resources, then calls the
Get_Transaction service to obtain the inbound request. When the conversation
ends, the shell regains control and calls the Get_Transaction service again when
the transaction

APPC Transaction Scheduler

APPC / MVS
Transaction

Initiatior

Transaction
Program

.

.

.

Etc

Call
Accept-

Conversation

Figure 4-4. Standard Scheduling for an APPC/MVS Transaction Program

Using APPC/MVS Services

4-18 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

program is ready to handle the next request. Use of a loop structure lets you do the
same processing for each requesting user.

To use multi-trans scheduling, transaction programs must be defined with a
schedule type of multi-trans in the TP profile. The TP profile entry must also contain
a user ID to provide the initial security environment for the multi-trans shell. The
shell runs under this generic user ID during initialization, while the shell allocates
general resources for the TP to use. The generic user ID remains in effect until the
first successful Get_Transaction call, when the security environment is personalized
to the user ID associated with the inbound request. That personalized security
environment covers the entire conversation and remains in effect until the next
Get_Transaction call, or until the shell explicitly returns to its generic security
environment, typically to perform cleanup or data set reallocations between
conversations. To return to its generic user ID, the shell can call the
Return_Transaction service.

The multi-trans shell can process an initial inbound Allocate request without first
issuing Get_Transaction; in this case, the generic ID— not the user ID associated
with the inbound request— identifies the conversation being processed. Using the
multi-trans shell’s generic ID this way can be useful when:

v A trusted, remote partner TP cannot supply a user ID on its inbound Allocate
requests, or

v The installation wants the work that an APPC/MVS TP processes on behalf of its
partners to run under only one user ID, rather than several individual IDs.

Call
Accept-

Conversation

APPC Transaction Scheduler

APPC / MVS
Transaction

Initiatior

Multi-Trans Shell

Transaction

.

.

.

.

.

Etc

Call
Get_Transaction

Figure 4-5. Multi-Trans Scheduling for an APPC/MVS Transaction Program

Using APPC/MVS Services

Chapter 4. The APPC/MVS Programming Interface 4-19

The multi-trans shell is responsible for doing all necessary cleanup between
conversations to ensure the integrity and security of the TP’s conversations and
data for consecutive users. The shell can do the cleanup under the same user ID
as the preceding conversation, or the generic user ID.

When there are no more inbound requests for a multi-trans TP to process, control
returns under the generic user ID. A return code from Get_Transaction indicates
whether or not the caller can invoke the Get_Transaction service again to wait for
more work to arrive. If the shell does not call Get_Transaction again, it should clean
up any remaining resources and end the program.

Figure 4-6 shows the different phases of multi-trans processing. Shaded sections
are covered by the generic user ID; the rest is under personalized security.

A multi-trans TP must manage user-specific resources such as SYSOUT data
separately for each conversation. If you want a multi-trans TP to print SYSOUT data
for each user, you need to allocate a SYSOUT data set and explicitly deallocate or
close and free it for each conversation. If SYSOUT data sets are not deallocated or
closed and freed, SYSOUT data is not printed for users of the multi-trans TP until
the entire TP and its shell environment are terminated.

Multi-trans processing is appropriate only for certain types of transaction programs.
As a general rule, when properly implemented, multi-trans processing is appropriate
for transactions that are requested often by multiple users, that have a high
resource overhead, and that finish processing comparatively quickly. For example,

ELSE

Transaction

Get_Transaction

Accept_Conversation

Return_Transaction CallATBRTRN

shellprocessingcoveredbygenericuserid=

Multi-TransShell

Initialization
allocatedata...

CallATBGTRN

IFRC>0THEN
terminate

clean-up
reallocate...

Figure 4-6. Phases of Multi-Trans Processing

Using APPC/MVS Services

4-20 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

multi-trans processing could be appropriate for a phone book application that brings
an entire phone book into a data space, then supplies phone numbers to multiple
users in sequence.

Examples of Multi-Trans Scheduling
The following are some pseudocode examples of TPs that use multi-trans
scheduling. When the TP is initiated, the shell code gets control first, calls
Get_Transaction to obtain the first request, and repeats the call to get subsequent
transactions. For example:
initialization for all users
CALL ATBGTRN to obtain work request
DO WHILE WORK_IS_REQUESTED

...

transaction processing for the user

...

CALL ATBGTRN to obtain the next work request
END WHILE
termination

You can code a transaction program to function as either standard or multi-trans,
depending on the schedule type specified in the TP profile. To determine which TP
schedule type it was invoked with, a transaction program can use the information
extract service (see “Extract_Information” on page 9-8), and then do the appropriate
processing. For example:
(extract TP information -- call ATBEXAI)
IF TP_IS_SCHEDULED_AS_A_STANDARD THEN

initialization
transaction processing for the user (TP scheduled as STANDARD)
termination

ELSE
initialization for all users
CALL ATBGTRN to obtain work request
DO WHILE WORK_IS_REQUESTED

...

transaction processing for the user

...

CALL ATBGTRN to obtain the next work request
END WHILE
termination

END IF

As an alternative to calling the Extract_Information service, the multi-trans shell can
issue the Get_Transaction service in any case and continue with standard or
multi-trans processing based on the return code from Get_Transaction. For
example:
initialization (possibly for all users)
CALL ATBGTRN to obtain work request for a specific user
IF RC=16 (Not a multi-trans environment) THEN

transaction processing for the user (TP scheduled as STANDARD)
ELSE

DO WHILE WORK_IS_REQUESTED

Using APPC/MVS Services

Chapter 4. The APPC/MVS Programming Interface 4-21

...

transaction processing for the user

...

CALL ATBGTRN to obtain the next work request
END WHILE

END IF
termination

The multi-trans program can return to its shell environment by calling the
Return_Transaction service between conversations, to clean up resources or
allocate new ones if necessary. For example:
initialization for all users
allocate data sets
CALL ATBGTRN to obtain work request
DO WHILE WORK_IS_REQUESTED

...

transaction processing for the user

...

IF data sets are full THEN
CALL ATBRTRN to return to shell environment
Reallocate data set

CALL ATBGTRN to obtain the next work request
END WHILE
termination

Security for the Standard and Multi-Trans Schedule Types
Multi-trans programs should be trusted applications. They must do whatever
cleanup is necessary between transactions to ensure that resources are released
and transactions are isolated from one another and from any resources used
exclusively by the shell.

Except for the cleanup responsibilities, multi-trans scheduling provides the same
security protection as standard scheduling (checking user IDs, passwords, and
profiles passed on each inbound conversation request). Each conversation with a
multi-trans program runs under a personalized security environment, based on the
user ID associated with the inbound request, when the multi-trans shell issues
Get_Transaction and Return_Transaction to process conversations.

The generic user ID, specified in the TP profile, covers initialization and termination
processing by the multi-trans shell, and any interim processing between a
Return_Transaction and subsequent Get_Transaction call.

Because the generic ID covers processing that typically must be isolated from the
different conversation partners, the generic ID must be secure from unauthorized
specification or modification. To protect the generic ID, you can use RACF to control
read and update access to the TP profile where the generic ID is specified.

To do so, your installation can define the APPCMVS.TP.MULTI resource to the
RACF FACILITY class and put the authorized administrators on the resource
access list, as described in z/OS MVS Planning: APPC/MVS Management. The
administration of multi-trans TP profiles must be limited to administrators who have

Using APPC/MVS Services

4-22 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

the same authority as the security administrator or to a system programmer who is
responsible for updating authorized libraries.

Performance Considerations for TP Schedule Types
APPC/MVS offers potential performance benefits to transaction programs that are
suited and properly designed for use with the multi-trans schedule type. To justify
multi-trans scheduling, it must be less resource-intensive to change the user
associated with the running of a transaction than to reinitiate the TP in an
environment already set up for the particular user. Therefore, be sure to assess
resource consumption before deciding on a TP schedule type.

Assigning Multi-Trans TPs to their own Class of Transaction
Initiators
For performance reasons, IBM recommends that each transaction program
scheduled as multi-trans be assigned to a unique class of APPC/MVS transaction
initiators. Those classes are defined in the ASCHPMxx parmlib member and
assigned to transaction programs in the TP profile. Each class consists of a range
(maximum and minimum number) of transaction initiators that are available for
running transaction programs of that class. See z/OS MVS Planning: APPC/MVS
Management for more details about defining classes of transaction initiators.

Establishing a Multi-Trans Transaction Program that is Always
Available
Multi-trans scheduling is especially suitable for APPC/MVS transaction programs
that must always be available to handle inbound requests. To ensure that an
initiator is always available to run a multi-trans TP, a system programmer can do the
following:

1. In the TP profile, assign the TP to a unique class of initiators.

2. In the TP profile, set the TIME parameter to NOLIMIT to prevent the IEFUTL
exit of SMF from receiving control and terminating the address space that the
multi-trans TP is running in.

To terminate or replace such a multi-trans TP, a system programmer can:
1. Set its TP profile inactive to prevent new inbound requests
2. Allow it to process any queued requests
3. Activate the TP profile for the new multi-trans TP.

SMF Recording for Multi-Trans Services
The Get_Transaction and Return_Transaction services create SMF records. For
performance reasons, if records are not wanted, you can set SMF inactive on the
system using the SMFPRMxx PARMLIB member. For more information about SMF
recording, see z/OS MVS System Management Facilities (SMF).

For reference information about multi-trans scheduling, including syntax and
parameters, see “Get_Transaction” on page 9-15 and “Return_Transaction” on
page 9-24.

Identifying and Deallocating Conversations with Outstanding
Asynchronous Requests

In some situations, a program might need to determine whether an address space
contains any outstanding asynchronous APPC/MVS calls, including calls to ATBxxxx
services that have an asynchronous processing specified on the Notify_Type
parameter. For example, an authorized command or program cannot be invoked
from a TSO/E address space while an asynchronous APPC/MVS call is
outstanding.

Using APPC/MVS Services

Chapter 4. The APPC/MVS Programming Interface 4-23

In such situations, you can call the Asynchronous_Manager service to determine
whether asynchronous APPC/MVS calls are outstanding, and if necessary, clean up
the conversations that hold them. For example, when TSO/E needs to invoke an
authorized command or program, TSO/E calls the Asynchronous_Manager service
to ensure that no asynchronous calls are outstanding.

Rejecting Conversations
When a TP determines that it should not process a particular conversation it has
accepted, the TP can reject the conversation by calling the Reject_Conversation
service. For example, a TP might reject a conversation if it determines that the
conversation has an unsupported sync_level. When it rejects a conversation, the TP
communicates the reason for the rejection to its partner by specifying a sense code
as an input parameter to the Reject_Conversation service. The partner LU resolves
the sense code to a return code that it passes it to the partner TP.

The Reject_Conversation service must be used early in a transaction; that is, before
any communication activity has occurred (such as data being sent or received).

Testing TPs
Programs can use TP test services to act as test shells for new or modified
transaction programs that are not ready to run on the system. The test services let
you run a TP in a non-APPC address space and possibly debug the TP
interactively. The test services are:

Register_Test Registers a TP for testing in the user’s address
space.

Accept_Test Accepts a TP for testing and waits for its partner to
request it.

Unregister_Test Cancels a pending TP test.

Cleanup_TP Deallocates and cleans up a test conversation.

For information about using these test services, see “Chapter 5. Installing and
Testing Transaction Programs” on page 5-1.

System Services
APPC/MVS provides authorized callable services that system programmers can use
to add their own transaction schedulers to the one provided by APPC/MVS. For
details about the system services that APPC/MVS provides, see z/OS MVS System
Messages, Vol 3 (ASB-BPX).

Example APPC/MVS Transaction Programs
The SYS1.SAMPLIB and SYS1.MACLIB data sets contain examples of
APPC-related interfaces, such as parmlib members, JCL, and TPs written in
Assembler, C, COBOL, FORTRAN, REXX, and RPG.

The sample TPs show how to call APPC/MVS services from programs that run
under APPC/MVS. For instructions on using any of the pairs of example TPs, see
the comments at the beginning of the outbound TP in that pair.

In past editions of this book, some of the example interfaces provided in
SYS1.SAMPLIB were listed in this chapter. Those examples were removed because
they only duplicated information that can be found in SYS1.SAMPLIB and other

Using APPC/MVS Services

4-24 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

books in the APPC/MVS library. Table 4-2 shows where you can find those
examples now:

Table 4-2. Where to Get Examples of APPC/MVS Interfaces

Description Location

List of all the APPC-related materials in
SYS1.SAMPLIB

SYS1.SAMPLIB member ATBALL

List of all the APPC-related materials in
SYS1.MACLIB

Table 4-3

Example TPs, written in PL/I:
v PL/I TP, pair 1, outbound standard
v PL/I TP, pair 1, inbound standard
v PL/I TP, pair 2, outbound multi-trans
v PL/I TP, pair 2, inbound multi-trans

SYS1.SAMPLIB member:
v ATBOUTP1
v ATBINTP1
v ATBOUTP2
v ATBINTP2

Example jobs to create standard and
multi-trans TP profiles

“Program Management” chapter in z/OS
MVS Planning: APPC/MVS Management

Table 4-3 lists the APPC/MVS-related materials provided in SYS1.MACLIB.

Table 4-3. List of APPC/MVS-Related Materials in SYS1.MACLIB

SYS1.MACLIB
Member

Description

ATBAPPCA APPC Component Control Block– Mapping of APPC/MVS-specific
information that is available for use by the installation

ATBASASM Pseudonym file for APPC/MVS Version_Service– Assembler
Services

ATBCSASM Pseudonym file for APPC/MVS Callable System Services–
Assembler

ATBCTASM Pseudonym file for APPC/MVS Callable Transaction Services–
Assembler

ATBDFTP APPC SDFM Transaction Profile (TP) Key Mapping Macro and TP
Mapping Macro

ATBDFTPE APPC SDFM TP Profile Conversion Exit Parameter Control Block

ATBEXCON APPC Extract Conversation Information Control Block Mapping

ATBEXCOS APPC Extract Specific Conversation Information Control Block
Mapping

ASBEXSCH APPC extract scheduler information control block mapping macro;
defines the layout of the data that the system returns after a
program calls the Extract_Information service

ATBSECB Maps the information passed to the Scheduler Extract Exit

ATBSERV Pseudonym file for LU 6.2 Protocol Boundary Interface– Assembler

ATBXCFMS Mapping of each APPC/XCF message in APPC, and constants for
the APPC/XCF message types.

Using APPC/MVS Services

Chapter 4. The APPC/MVS Programming Interface 4-25

Using APPC/MVS Services

4-26 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Chapter 5. Installing and Testing Transaction Programs

After you have written an APPC/MVS transaction program (TP), you need to install
and test it on MVS. After you test the TP and fix any problems in the code, you can
make the TP available to other users on the system.

This chapter describes how to:

v Install a TP for testing

v Test a TP on MVS

v Collect problem data for errors that occur when testing a TP

v Put a tested TP into production

v Replace an active TP with a new version of the TP.

Installing a TP for Testing
Before you test a TP, you must do the following to install the TP:

1. Compile or assemble the TP.

2. Load the TP in a load module, or link-edit the TP in a load module with one or
more of the following modules from SYS1.CSSLIB:

ATBPBI For TPs that call CPI Communications or TP conversation
services.

ATBATP For TPs that call advanced TP services.

ATBCTS For TPs that call Reject_Conversation or
Set_Conversation_Accounting_Information.

After installing the TP, you can test the TP using one of the methods described in
the following section.

Testing a TP on MVS
The best way to test a TP on MVS is to:

v Test a private copy of the TP under a TSO/E user ID, then

v Test the TP under APPC/MVS scheduling (while restricting use of the TP to your
own TSO/E user ID).

For these tests, you must create an environment called a test shell, which allows
the TP to run in any address space as if it were running in an APPC/MVS initiator
address space. You can also include interactive debugging facilities in the test shell
to help test and diagnose the TP.

To create a test shell, you must call the APPC/MVS test services described in
“Descriptions of APPC/MVS Test Services” on page 5-2. APPC/MVS provides three
methods that you can use to invoke the test services, which are described in
“Methods You Can Use to Create a Test Shell” on page 5-2.

© Copyright IBM Corp. 1991, 2001 5-1

Methods You Can Use to Create a Test Shell
You can use one of the following methods to test a TP on MVS:

Table 5-1. Methods For Testing TPs on APPC/MVS

Method Description Reference

APPCTEST
Interface

A collection of panels, REXX
procedures, and programs that allow
you to call APPC/MVS test services
from the “Foreground Selection Panel”
under ISPF/PDF.

APPC Application Examples
in MVS/ESA and OS/2

Direct calls to test
services

A method by which your application
can call APPC/MVS services directly.
The test services divert the TP to a
TSO/E address space.

“Calling APPC/MVS Test
Services from Your
Application” on page 5-3

TSO/E TEST
command

A command that invokes APPC/MVS
test services for assembler TPs only.

“Using the TSO/E TEST
Command to Test an
Assembler Language TP” on
page 5-5

The APPCTEST interface has certain advantages over calling the APPC/MVS test
services directly. For example, when using APPCTEST, you do not have to insert
calls to APPC/MVS test services into your application code. Therefore, you can use
the same application code during the test and production phases for your TP. See
APPC Application Examples in MVS/ESA and OS/2 for a detailed explanation of the
advantages of using APPCTEST.

The following section describes the APPC/MVS test services that you can invoke
using any one of the methods described earlier.

Descriptions of APPC/MVS Test Services
The following APPC/MVS test services are used to create a test shell for a TP
under test:

Register_Test Places an inbound TP (the TP to be tested) in “test
mode”, and performs the setup required to start the
TP in the caller’s address space when inbound
allocate requests arrive for the TP.

Accept_Test Informs the APPC address space that the test shell
is ready to accept inbound allocate requests for the
TP, and suspends execution on the issuing address
space.

Unregister_Test Cancels an outstanding Register_Test request to
prevent the TP from running under the test shell.

Cleanup_TP Deallocates and cleans up any conversations and
resources that are left after the test is complete.
You must call this service if you plan to create
another test session in the same TSO/E address
space.

Test Shell Characteristics
The required environment for a test shell TP is:

Minimum authorization: Problem state, any PSW key

Installing and Testing TPs

5-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Dispatchable unit mode: Task mode

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: All parameters must be addressable by the caller
and in the primary address space.

Other requirements are:

v The test shell program must have a Schedule_Type of Standard (not
Multi_Trans) in the TP profile. To test a TP that was written as multi-trans,
comment out the sections of code that issue the Get_Transaction and
Return_Transaction services.

v The user must have access to run the inbound TP.

Calling APPC/MVS Test Services from Your Application
To create a test shell by calling APPC/MVS test services from your application, do
the following:

1. Logon to TSO/E with a logon procedure that does not allocate APPC/MVS
conversations when an APPC/MVS TP is to be tested.

2. Catalog the data set that contains the load module for the TP to be tested.

3. Allocate all required data sets to the TSO/E address space where the TP is to
run, including a data set for TP message log. See the section on logging
transaction program processing in z/OS MVS Planning: APPC/MVS
Management.

4. Ensure that no active APPC conversations are in progress in the TSO/E
address space, and that all resources from prior conversations are cleaned up
in the TSO/E address space.

5. Establish the required environment for the TP under test, as described in “Test
Shell Characteristics” on page 5-2.

6. Ensure that the TP under test belongs to an APPC/MVS local LU that allows
user-level TP profiles. Although you are not required to have a user-level TP
profile when testing a TP under a TSO/E user ID, you must enable the LU for
user-level TP profiles. See “Enabling an LU for User-Level TP Profiles” on
page 5-8.

7. Enter calls to the Register_Test and Accept_Test services from the TP to be
tested. The sequence of these calls is shown in Figure 5-1 on page 5-4:

Installing and Testing TPs

Chapter 5. Installing and Testing Transaction Programs 5-3

Note: If the call to Register_Test fails, APPC resources might be active in the
TSO/E address space where the TP is to run. To initialize your
environment, you should logoff TSO/E, and then logon again. Do not
logon to TSO/E again without first logging off (this will not initialize your
environment).

8. Invoke an outbound TP to start a conversation with the inbound TP (the TP to
be tested) under APPC/MVS. The outbound TP should specify the following
values when calling the Allocate service to allocate the conversation:
v The user ID under which the TP under test (the inbound TP) is running
v A Security_type of security_pgm or security_same.

See “Chapter 8. APPC/MVS TP Conversation Callable Services” on page 8-1
for a complete description of the parameters that are required on an Allocate
call from an outbound TP.

9. Run the load module that contains the TP to be tested (you must take this step
because the APPC/MVS test services ignore any JCL in the TP profile).

10. Enter calls to the Cleanup_TP and Unregister_Test services from the TP to be
tested.

11. When the test is complete, end the TP under test. You can call one of the
following Cleanup_TP services to deallocate and clean up any conversations
and resources that are left after the test is complete:
v ATBCUC1, if the test shell is problem state and PSW key 8
v ATBCTP1, if the test shell is supervisor state or PSW key 0-7.

If you want to repeat a test of a TP, you must call the Register_Test service again.

Figure 5-1. Use of Test Services by a TP Test Shell

Installing and Testing TPs

5-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Using the TSO/E TEST Command to Test an Assembler Language TP
The TSO/E TEST command offers interactive test facilities that allow you to test
TPs written in assembler language. TSO/E TEST automatically calls the
Register_Test and Accept_Test services, and loads the module for the TP to be
tested. When the test ends, TSO/E TEST automatically cleans up the TP to be
tested and its conversations if the KEEPTP parameter is not specified on the
command.

Follow these steps when using TSO/E TEST to test an assembler TP:

1. Logon to TSO/E with a logon procedure that does not allocate APPC/MVS
conversations when an APPC/MVS TP is to be tested.

2. Catalog the data set that contains the load module for the TP to be tested.

3. Allocate all required data sets to the TSO/E address space where the TP is to
run, including a data set for the TP message log. See the section on logging
transaction program processing in z/OS MVS Planning: APPC/MVS
Management.

4. Ensure that no active APPC conversations are in progress in the TSO/E
address space where the TP is to run.

5. Establish the required environment for the test shell TP, as described in “Test
Shell Characteristics” on page 5-2.

6. Ensure that the TP under test belongs to an APPC/MVS local LU that allows
user-level TP profiles. (Although you are not required to have a user-level TP
profile when testing a TP under a TSO/E user ID, the associated LU still must
be enabled for user-level TP profiles.) See “Enabling an LU for User-Level TP
Profiles” on page 5-8.

Figure 5-2 shows a terminal screen that represents the sequence of events for
steps 7 through 9, which follow. In the figure, capitalized text indicates a
response from the system, and mixed-case text indicates a user command:

7. Enter the TEST command, where “user.appc.load(testtp)” is the load module
for the TP to be tested, TESTTP is the TP name under which the load module

READY

«7¬ test 'user.appc.load(testtp)' tp('TESTTP') lu('LUA')

IKJ57522I YOU CAN ALLOCATE THE TP NOW

«8¬ +++ the user starts a program that allocates
the TP to be tested +++

TEST

«9¬ +++ the user can now test the TP as if it
is an ordinary program +++

TEST

«10¬ end

READY

Figure 5-2. TSO/E Terminal Screen

Installing and Testing TPs

Chapter 5. Installing and Testing Transaction Programs 5-5

is to be tested, and LUA is the LU on which the TP is to be tested. If you do
not enter the LU keyword, the default value is the system base LU. The
system loads and invokes the TP.

8. After the system issues message IKJ57522I, start an outbound TP that
allocates an APPC/MVS conversation with the TP to be tested. The outbound
TP should specify the following values when calling the Allocate service to
allocate the conversation:

v The user ID under which the TP under test (the inbound TP) is running

v A Security_type of security_pgm or security_same.

See “Chapter 8. APPC/MVS TP Conversation Callable Services” on page 8-1
for a complete description of the parameters that are required on an Allocate
call from an outbound TP. The system displays a TEST mode message.

9. Enter TEST subcommands to test the TP (see z/OS TSO/E Command
Reference for information about TEST subcomands). When the test completes,
the system returns another TEST mode message, and waits for the user’s next
command.

10. Enter the end subcommand to end test processing. TEST returns to READY
mode.

For complete information about how to use the TSO/E TEST command, see z/OS
TSO/E Command Reference and z/OS TSO/E Programming Guide.

Testing a TP under APPC/MVS Scheduling
Before you test an inbound TP in a live system under APPC/MVS scheduling, ask
your APPC administrator to:

v Create a TP profile that restricts the use of the TP under test to your own user ID
(called a user-level TP profile). See “Requesting a User-Level or Group-Level TP
Profile” for an explanation.

v Provide side information for the TP, if necessary. See “Requesting Side
Information” on page 5-8 for instructions.

After performing these actions, use one of the methods described in “Methods You
Can Use to Create a Test Shell” on page 5-2 to test a TP under APPC/MVS
scheduling.

While the TPs are running, the system writes messages to the job log. When the
TPs are finished, check the job log and verify the results of the TP’s processing.
For information on how to collect problem data from the job log, see “Collecting
Problem Data for Errors that Occur During Testing” on page 5-8.

Note: If a multi-trans TP remains active indefinitely, the job-log messages for the
TP will eventually wrap and overwrite previous messages. However, the
messages from the multi-trans shell are not overwritten.

Requesting a User-Level or Group-Level TP Profile
When setting up the APPC/MVS network, your APPC administrator creates a TP
profile to contain scheduling and security information that might be necessary to
run your TP in MVS. The APPC administrator can submit batch jobs to update
entries in the TP profile.

A user-level TP profile is a TP profile that specifies that only a single user can
execute a TP or access the TP’s profile. A user-level TP profile prevents other

Installing and Testing TPs

5-6 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

system users from accessing the TP while it is still under test. A group-level TP
profile is a TP profile that specifies that a specific group of users can run a TP or
access the TP’s profile.

You might need to have an APPC administrator set up a user-level or group-level
TP profile for you. Provide the following information to the APPC administrator when
requesting a user-level profile:

v Your user ID, as it is known to your security system (if you are using RACF, this
might be your TSO/E user ID).

v The 1- through 64-character TP name that the calling partner passes on its
Allocate request to the TP under test.

v An “active status” of YES (to activate the TP).

v The name of a transaction scheduler exit, if your TP is not scheduled by the
APPC/MVS transaction scheduler, ASCH.

If your TP uses another scheduler, the rest of the profile contents will vary. If your
TP uses the APPC/MVS transaction scheduler, provide the following additional
information:

– SYSOUT and account tailoring (whether you want the TP’s SYSOUT and
account information to be tailored with information from your RACF profile).

– Scheduler class (defined by a system programmer).

– TP schedule type (standard or multi_trans).

– JCL, including a job statement, to schedule and attach the program. Use a
unique jobname to help track and debug the TP.

– The name of a data set for the TP message log to record transaction program
events. The default name of the TP message log is
‘&SYSUID.&SYSWUID.&TPDATE.&TPTIME.JOBLOG’.

– The KEEP_MESSAGE_LOG parameter value: ALWAYS or ERROR. For
testing, use ALWAYS.

Note: The JCL can include conditional statements to print the TP message
log on selected error conditions.

– The status of the TP message log (new, old, or mod).

– Any SMS storage, management, or data classes for the TP message log.

When creating a group-level TP profile, the APPC administrator can replace the
user ID defined in the user-level profile with a RACF group-id , which identifies a
group of user IDs. The APPC administrator can enter RACF commands to define
the group-id and connect user IDs to the group-id.

To request a group-level TP profile, provide the APPC administrator with the user
IDs of all users to be assigned to the group (in addition to the above information).
The APPC administrator can then replace the user ID in the TP profile with a RACF
group-id.

For more information about the TP profile contents, including examples and JCL
restrictions, see z/OS MVS Planning: APPC/MVS Management.

Requesting Access to a User-Level TP Profile
After the APPC administrator creates a user-level TP profile for a TP under test, you
should have the security administrator give you access to the profile. If necessary,

Installing and Testing TPs

Chapter 5. Installing and Testing Transaction Programs 5-7

have the security administrator define the TP profile as a RACF resource, and give
your user ID (or the user ID passed on the Allocate request to the TP under test)
access to run the TP.

Requesting Side Information
If your TP on MVS uses a symbolic destination name to call a partner TP, your
APPC administrator must create an entry in the side information file for the TP. The
entry must include:

v The partner TP name (the name of the inbound TP that allocates a conversation
with the TP under test)

v The LU and mode names to be associated with the symbolic destination name
for the partner TP.

If necessary, have your security administrator give you access to the entry in the
side information that contains the listed data.

Enabling an LU for User-Level TP Profiles
When testing a TP either under a TSO/E user ID or under APPC/MVS scheduling,
you must ensure that the associated local LU is defined to handle a user-level TP
profile , which is described in “Requesting a User-Level or Group-Level TP Profile”
on page 5-6. To enable an LU for user-level TP profiles, specify the
TPLEVEL(USER) parameter on the LUADD statement in the APPCPMxx parmlib
member that defines the local LU.

The following example shows how to create an LUADD statement that enables
user-level TP profiles for TPs associated with LU MVSC6LU1:

For more information about how to set processing levels for LUs, see the “Planning
Sessions” chapter in z/OS MVS Planning: APPC/MVS Management.

Collecting Problem Data for Errors that Occur During Testing
For errors that occur during testing, some possible problem determination actions
include:

v Reading the job log to find system completion (abend) codes.

v Checking the return codes from the APPC services, if they are involved. For
example, add messages to write each return code to the terminal or the
message-log data set.

v Making sure that the TP handles all possible return codes from each APPC
service. For example, if one TP might issue Send_Error, the partner TP must be
prepared to handle the Program_error return codes from each APPC service that
it calls.

LUADD ACBNAME(MVSC6LU1) /* Add LU to APPC/MVS configuration */
SCHED(ASCH) /* Specify that APPC/MVS transaction */

/* scheduler is associated with LU */
TPDATA(APPC.APPCTP) /* The VSAM data set APPC.APPCTP is */

/* permanent repository for the TP */
/* profiles for this LU. */

TPLEVEL(USER) /* Indicates that this LU can process */
/* incoming requests at all audience */
/* levels, including those that limit */
/* use of a TP to individual users. */

Installing and Testing TPs

5-8 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Displaying APPC Activity on MVS
If necessary, a system operator or TSO/E user with operator authority can use the
DISPLAY command with the APPC operand to find information about an active
conversation. Supply your user ID; for example, the following syntax would display
activity for all TPs running under user ID NATHAN:
DISPLAY APPC,TP,ALL,USERID=NATHAN

The DISPLAY command provides information such as the local and partner TP
names, the conversation idle time, the local jobname (ASNAME=xxx), and address
space ID (A=xxx). If necessary, an operator can cancel the local TP by jobname
and address space ID.

Tracing APPC Conversations
The primary tools for debugging errors in APPC/MVS TPs are described in
“Chapter 6. Diagnosing Problems with APPC/MVS TPs” on page 6-1, which includes
a section that helps programmers decide which tool to select.

When APPC problems might involve the network or system configuration, system
programmers can use APPC component trace to collect diagnostic information. Use
the TRACE CT command to start APPC tracing and the IPCS CTRACE
subcommand to format the trace data. See z/OS MVS Diagnosis: Reference for
more information.

For conversations that cross the VTAM network, VTAM traces can help diagnose
communications problems. See z/OS Communications Server: SNA Diagnosis Vol 1
Techniques and Procedures for more information.

The MVS and VTAM trace facilities can return detailed information about a
conversation, including data that passed between the TPs. For example, the FMH-5
(Functional Management Header-5) contains the input for an inbound allocate
request; APPC passes that input in the FMH-5 across the network to the partner
LU. To understand the contents of an FMH-5, see SNA Formats.

Putting a Tested TP into Production
The way you make a tested TP available for general use depends on the policy of
your installation. Your APPC administrator can do the following to enable other
users to run the TP:

1. Copy the user-level TP profile that the APPC administrator created for the test
shell into a profile data set associated with another LU (ideally an LU dedicated
to production-ready TPs).

2. In the profile, replace the parameter that specifies your user ID with one of the
following:

v The SYSTEM parameter (to make the profile available to the LU).

v A RACF “group ID” to create a group-level TP profile (to make the profile
available to a group of users). If your security system is not RACF, specify an
identifier that defines a group of users to the security system.

See “Requesting a User-Level or Group-Level TP Profile” on page 5-6 for
information.

3. Edit the profile’s JCL to set the correct environment for the new users (if
necessary). For example, change the KEEP_MESSAGE_LOG parameter value
from ALWAYS to ERROR.

Installing and Testing TPs

Chapter 5. Installing and Testing Transaction Programs 5-9

Your security administrator might also need to give the appropriate users access to
the TP profile and any other TPs that the TP allocates conversations with, including
any side information used on the allocate requests.

Replacing an Active TP
At some point you might need to replace an inbound TP that is currently active on
your system. To avoid having old and new versions active at the same time, have
an APPC administrator:

v Set the current TP profile “inactive” to prevent new inbound requests

v Allow the active transaction initiator to process any queued requests

v Modify the TP profile for the new version if necessary and reactivate the TP
profile, or delete the TP profile and add a new one.

Installing and Testing TPs

5-10 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Chapter 6. Diagnosing Problems with APPC/MVS TPs

Several tools are available to help you diagnose problems related to APPC/MVS
transaction programs (TPs). Like the great detectives of fiction, each tool has its
own specialty. Just as Sir Arthur Conan Doyle’s Sherlock Holmes collects details
from the scene of the crime, so APPC component trace collects information about
the environment in which APPC/MVS TPs run. In contrast, Agatha Christie’s
Hercule Poirot relies on conversing with each suspect to uncover facts, as the
application programming interface (API) trace facility does by collecting details
about conversation calls that an APPC/MVS TP issues.

While you might hire your favorite fictional detective to solve any mystery, you
achieve better results if you select a diagnostic tool based on the problem
symptoms, rather than using the same tool for all errors. In some cases, you might
need a combination of tools to ensure that you are collecting the most pertinent
diagnostic information. For example, if you are testing an APPC/MVS TP that
converses with a TP on OS/2, you might need to use both the API trace facility and
OS/2’s tracing facility to debug problems with the conversation flow.

You also might use one or more tools even when an error has not occurred. Again,
in a test environment, you could use the TP message log and the API trace facility
to collect data each time the TP runs. If errors occur during the TP’s processing,
you already have the diagnostic data you need to debug the errors; if the TP
successfully finishes its processing, you already have the data you need to verify its
success.

In most cases, the API tracing facility can provide you with the diagnostic data you
need. Additionally, it has the advantage of being relatively easy to start and stop.
However, because it might not be the most appropriate tool in all cases, use
Table 6-1 to help you select which tool is best suited to the error conditions you
observe, or might expect to encounter, for an APPC/MVS TP.

Table 6-1. Selecting a Diagnostic Tool

When the symptoms are: The usual suspects are: The detective of
choice is:

Non-zero return code from an
APPC/MVS or CPI-C service call

v Unknown parameters passed
on the service call

v Incorrect parameter values
passed on the call

v Incorrect conversation state
for issuing the call to the
service

v Conditions that prevent the
successful completion of the
service call

API trace facility, or
Error_Extract service

© Copyright IBM Corp. 1991, 2001 6-1

Table 6-1. Selecting a Diagnostic Tool (continued)

When the symptoms are: The usual suspects are: The detective of
choice is:

Return code for product-specific
error

v Incorrect version of service
call for the system on which
the TP is running

v APPC/MVS is not active, or
has encountered an internal
error

v Various environmental errors,
which can include security
checking, caller authorization,
APPC/MVS configuration
errors, and so on

API trace facility,
Error_Extract service,
or the symptom
record for the error

v Unexpected results or
non-zero return codes for TP
processing

v Unexpected DISPLAY
command results about the
status of the TP or its partners

v TP or its partner seems to be
hanging

v Abnormal end of the TP

v Incorrect sequence of calls
between partner TPs

v Incorrect TP design

v Incorrect parameter syntax

v Incorrect conversation state

API trace facility

v Unexpected results or
non-zero return codes for TP
processing

v Problems related to the
allocation of resources on
behalf of the TP

v Abnormal end of the TP

v Non-zero return codes from
MVS macros or callable
services

v Incorrect TP profile or side
information contents

TP message log

Error messages or unexpected
DISPLAY command results about
the status of the APPC/MVS
configuration

v Status of the LU, scheduler, or
server for the TP

v System errors or
environmental conditions that
affect the processing of
APPC/MVS

IPCS APPCDATA or
ASCHDATA
subcommands, or
APPC/MVS
component trace

As application programmers designing and coding APPC/MVS TPs, your primary
diagnostic tools are the API trace facility, Error_Extract, and the TP message log,
which are described in this chapter, along with descriptions of symptom record
contents for product-specific errors. The API trace facility and TP message logs
require some installation set-up, which is usually performed by system
programmers; z/OS MVS Planning: APPC/MVS Management contains this set-up
information. Information about other diagnostic tools appears elsewhere:

For this tool: Information appears in:

APPCDATA and ASCHDATA
subcommands

z/OS MVS Diagnosis: Reference

APPC/MVS component trace z/OS MVS Diagnosis: Tools and Service Aids

Diagnosing Problems with APPC/MVS TPs

6-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Comparing the Detectives: Error_Extract, API Trace, and the TP
Message Log

In the distributed processing environment, debugging programming errors is much
like solving a complicated murder mystery; your goal is to find out what killed your
TP. Fortunately, APPC/MVS provides the following diagnostic tools to help you solve
that mystery:

v The API trace facility,

v The Error_Extract callable service, and

v The TP message log.

These tools differ in several ways that can help you determine which tool, or
combination of tools, is best suited to detect the cause of the error. The following
topics describe these differences in general terms; for detailed information about
each tool, see:

v “Diagnosing TP Conversation Errors with the API Trace Facility” on page 6-7

v “Overview of Error_Extract Service” on page 6-38

v The section on logging TP processing in z/OS MVS Planning: APPC/MVS
Management.

Clues: What Information They Collect
Sherlock Holmes always concentrates fiercely on physical evidence; he never visits
the scene of the crime without his magnifying glass. Hercule Poirot, in marked
contrast, disdains crawling in the dirt, on hands and knees; instead, he prefers to
mingle with the suspects, collecting significant words and phrases that explain
people’s behavior and psychology.

As with Holmes and Poirot, each APPC/MVS diagnostic tool collects different types
of clues. Error_Extract provides detailed information about the error that occurred
on a single call to an APPC/MVS or CPI-C service, whereas API trace provides the
details about each service call made by a particular TP, regardless of whether an
error occurred. When an error does occur on a specific call, the API trace data for
that call automatically includes the information that Error_Extract would return for
that service. Because API trace provides the same, and more, information as
Error_Extract, API trace is the preferred detective for most situations.

API trace and Error_Extract provide diagnostic information for most, but not all,
APPC/MVS and CPI-C callable services. See Table 6-2 on page 6-6 for a list of the
services that are supported by either API trace, Error_Extract, or both.

In contrast, the TP message log provides information through messages generated
while a TP runs, such as system messages about resources allocated by the TP.
The message log could contain messages about a conversation call, but only if the
application programmer deliberately codes the TP to issue write-to-programmer
messages to record its progress. Although useful, these messages cannot contain
the detailed information that APPC/MVS provides through the API trace facility.

Modus Operandi: How They Interrogate Suspects
Because Holmes relies on physical evidence, his contact with suspects is usually
brief and impersonal; he works almost in isolation, with little contact with others.
Poirot, on the other hand, mingles with the suspects on a daily basis, sometimes
becoming a temporary part of the household until the mystery is solved.

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-3

Similarly, the APPC/MVS diagnostic tools either work independently of TP
processing, or can be integrated into the TP’s design. You might use the TP
message log to collect write-to-programmer messages only during testing; collecting
such footprints is usually a temporary task, rather than being a permanent, integral
part of the TP’s design. Calls to Error_Extract, however, can be permanently
integrated into the design of any APPC/MVS TP. Whenever the TP’s processing is
based on the results of a call to an APPC/MVS or CPI-C service, the TP can call
Error_Extract immediately after detecting a non-zero value for the service return
code. With the additional diagnostic information that Error_Extract returns, the TP
can more efficiently process unsuccessful calls, even if it does nothing more than
pass that information to its caller or an end user.

A call to Error_Extract does not have to be a permanent part of the TP’s design, but
inserting calls for testing and then removing them for production would be relatively
inefficient and time-consuming. Instead, you could simply turn on the API trace
facility during testing, and turn it off during production. Because the API trace facility
is provided through a REXX exec instead of a callable service, you can control
tracing activity in several ways, without invoking the exec directly in the TP’s code.
This flexibility, along with the amount of trace data collected, makes the API trace
facility easier and more efficient to use.

Fees: How to Reduce the Cost of the Investigation
Only the rich can afford to hire Sherlock Holmes or Hercule Poirot, but you don’t
necessarily have to pay a high price for using the APPC/MVS diagnostic tools. Each
tool offers options that can help you reduce the cost of diagnosing errors.

Because API tracing is not necessarily controlled only through calls in a particular
TP’s code, tracing activity can encompass many TPs, many conversations, and
many users. Through only one invocation, you can start API tracing activity in a test
or production environment, and later stop the tracing activity at any time, just as
quickly and easily. This flexibility has a price: the more API traces you activate, the
greater the possible impact on the performance of APPC/MVS work. In a test
environment, you might be able to tolerate possible performance degradation; in a
production environment, you should consider restricting trace activity to reduce or
eliminate any performance impact.

Although TP message logging is directly tied to a TP’s processing, it might have
similar global effects on APPC/MVS work. Depending on the way your installation
has set up TP message logs, storage constraints or I/O contention might result. To
reduce or eliminate these possible effects, define a TP message log that is
cumulative (or reuse an existing data set), to be used only when an error occurs.

Because it is a callable service, Error_Extract is directly tied to a TP’s processing,
but has little or no effect on that TP’s performance. However, for other reasons,
such as the effort of integrating Error_Extract calls into a TP’s design, consider
using Error_Extract only when your TP’s processing depends on the return code
from an APPC/MVS or CPI-C service, or immediately after a failure in an Allocate
call. (Calling Error_Extract immediately after an Allocate call is the only method of
obtaining diagnostic information when the call fails because of problems with the TP
or LU.) In most other situations, the API trace facility is much easier to use to
collect diagnostic data.

The Initial Consultation: Building Your Crime Lab
Hiring either Sherlock Holmes or Hercule Poirot usually requires some effort. If
Holmes’ mood is unfavorable, only the most persistent client can engage his

Diagnosing Problems with APPC/MVS TPs

6-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

services. For Poirot, the nature of the mystery must be sufficiently intriguing to
entice him to work. Depending on your installation, some APPC/MVS tools require
initial set-up before programmers can use them, just as prospective clients must
provide background information for Holmes and Poirot.

Both the API trace facility and TP message log require some installation set-up,
which is usually performed by a system programmer. Both require data sets that
they use to contain trace data or TP messages; in some cases, these data sets
must be pre-allocated. In addition to pre-allocating data sets, the system
programmer might have to perform the following tasks:

v Define security profiles for the APPC/MVS resources related to tracing activity.

v Provide TP message log information in ASCHPMxx parmlib members and TP
profile files.

The Error_Extract service requires no installation set-up.

The All-Star Collaboration: A Team Approach
Fictional detectives do not often team up to solve a particularly complex mystery;
their egos are usually too great to allow such collaboration. The APPC/MVS
detectives are different; they are quite compatible. To muster these detectives into
an efficient mystery-solving team, consider using the following strategy:

v Using Error_Extract calls:

– When a TP’s processing varies depending on the return code from an
APPC/MVS or CPI-C service call.

– After any Allocate calls to establish a conversation with a TP. Probably the
most common error is making sure your program correctly identifies the TP so
that APPC/MVS can find and run it. If the TP does not get control,
Error_Extract information can help you pinpoint errors in configuration.

v For a test system:

– Setting up message logging so that a TP message log is produced for each
instance of a TP, even when errors do not occur. Once the TP’s execution
environment appears to be relatively stable (for example, resources are being
allocated correctly), reduce message logging to error situations.

– Setting up and starting an API trace for the TP, limiting tracing activity to a few
users. Once the conversation flow between the TP and its partners appears to
be correct, and individual service calls are handled correctly, tracing activity
can be expanded to encompass more users. More closely approximating a
production environment might make interpreting trace data more difficult, but
might allow you to detect more potential problems.

v For a production system:

– Reducing message logging to a minimum. Using cumulative logs, and writing
messages only for error situations, can significantly reduce storage constraints
and I/O, and might prevent you from having to re-create problems to obtain
diagnostic data.

– Using the API trace facility only when errors occur. As with message logging,
some performance degradation might occur during tracing, but you can limit
its use to specific TPs, conversations, or users to reduce the impact to your
production system.

Calls that Error_Extract or API Trace Support
Neither Holmes nor Poirot accepts any cases involving divorce. Similarly, the
Error_Extract service and API trace facility do not collect information for certain

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-5

conversation calls. Generally speaking, the unsupported calls either do not directly
affect a TP’s conversation, or do not get used frequently.

Table 6-2 lists the conversation services that are supported by either Error_Extract,
API trace, or both. Callable services are listed by descriptive name; for example,
“Allocate” represents both the CPI-C verb CMALLC, and the APPC/MVS verbs
ATBALLC and ATBALC2. All versions of each service are supported, so existing
TPs do not have to be changed to invoke the most recent version. The API trace
facility also supports some APPC/MVS allocate queue services; if necessary, see
z/OS MVS Programming: Writing Servers for APPC/MVS for more information.

Error_Extract and API trace return information about a conversation call only when:

v APPC/MVS is active

v A valid conversation ID is passed on those verbs that accept a conversation ID
as a supplied parameter

For API trace only, additional requirements, described in “How APPC/MVS Handles
an ATBTRACE START Request” on page 6-11, determine whether information is
collected for the conversation in which the call is issued.

Table 6-2. Calls that Error_Extract or API Trace Support

Callable Service Name APPC/MVS or
CPI-C call

Supported by:

Error_
Extract

API trace
facility

Accept_Conversation CPI-C Yes Yes

Allocate Both Yes Yes

Cleanup_TP APPC/MVS No Yes

Confirm Both Yes Yes

Confirmed Both Yes Yes

Deallocate Both Yes Yes

Extract_Conversation_State CPI-C Yes Yes

Extract_Conversation_Type CPI-C Yes Yes

Extract_Mode_Name CPI-C Yes Yes

Extract_Partner_LU_Name CPI-C Yes Yes

Extract_Sync_Level CPI-C Yes Yes

Flush Both Yes Yes

Get_Attributes APPC/MVS Yes Yes

Get_Conversation APPC/MVS Yes Yes

Get_TP_Properties APPC/MVS No Yes

Get_Type APPC/MVS Yes Yes

Initialize_Conversation CPI-C Yes Yes

Post_on_Receipt APPC/MVS Yes Yes

Prepare_to_Receive Both Yes Yes

Receive CPI-C Yes Yes

Receive_Immediate APPC/MVS Yes Yes

Receive_and_Wait APPC/MVS Yes Yes

Reject_Conversation APPC/MVS No Yes

Diagnosing Problems with APPC/MVS TPs

6-6 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 6-2. Calls that Error_Extract or API Trace Support (continued)

Callable Service Name APPC/MVS or
CPI-C call

Supported by:

Error_
Extract

API trace
facility

Request_to_Send Both Yes Yes

Send_Data Both Yes Yes

Send_Error Both Yes Yes

Set_Conversation_Type CPI-C Yes Yes

Set_Deallocate_Type CPI-C Yes Yes

Set_Error_Direction CPI-C Yes Yes

Set_Fill CPI-C Yes Yes

Set_Log_Data CPI-C Yes Yes

Set_Mode_Name CPI-C Yes Yes

Set_Partner_LU_Name CPI-C Yes Yes

Set_Prepare_to_Receive_Type CPI-C Yes Yes

Set_Receive_Type CPI-C Yes Yes

Set_Return_Control CPI-C Yes Yes

Set_Send_Type CPI-C Yes Yes

Set_Sync_Level CPI-C Yes Yes

Set_Syncpt_Options APPC/MVS No Yes

Set_TP_Name CPI-C Yes Yes

Test_Request_to_Send_Received CPI-C Yes Yes

Diagnosing TP Conversation Errors with the API Trace Facility
Using the application programming interface (API) trace facility, you can collect data
about APPC/MVS and CPI-C calls that an APPC/MVS TP issues. With this data,
you can diagnose not only errors that occur during a specific call, but also problems
with the conversation flow between the TP and its partners. This diagnostic
capability reduces the amount of time and effort required to develop and service
APPC applications.

Through the API trace facility, you can collect the following data for a particular TP
running on a particular LU:

v Parameters and values specified on calls issued for APPC/MVS and CPI-C
services, and values provided on return from those calls.

v The same diagnostic information that the APPC/MVS Error_Extract service
provides for calls that return non-zero return codes.

v Parameters and values specified on START and STOP requests for the API trace
facility.

v The contents of FMH-5 or FMH-7 records exchanged between conversing TPs.

This API trace data is stored in a pre-allocated data set that you specify when
starting the trace. You can view the data only after all tracing activity for the data
set has stopped.

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-7

To control API tracing activity, use the ATBTRACE REXX exec to start or stop
tracing, or to list the status of active API traces. Through the ATBTRACE exec, you
specify:

v The type of trace request: START, STOP or LIST

v The LU and TP combination that identifies the conversation

v The pre-allocated data set for storing trace data.

You can invoke the ATBTRACE exec from TSO/E, through JCL for a TP or batch
job, or from a high-level language program.

Depending on the location of the partners, you might have to start tracing activity on
more than one z/OS system, or use the API trace facility together with tracing
facilities provided for other operating systems, such as OS/2.

The following sections explain how to use the API trace facility:

v “Setting Up API Trace Data Sets” describes planning topics, such as possible
security requirements for trace data sets; trace data set characteristics; and how
to avoid losing trace data through wrapping or resource contention.

v “Starting API Tracing Activity” on page 6-11 explains how to select values for the
ATBTRACE START request, to ensure that APPC/MVS collects the trace data
you need.

v “Using the ATBTRACE REXX Exec” on page 6-20 explains:

– The methods of invoking the ATBTRACE REXX exec, including programming
considerations and output

– The syntax diagrams and parameter descriptions for each type of ATBTRACE
request.

v “Interpreting API Trace Data” on page 6-32 contains general descriptions and
examples of trace data set entries, an d provides suggestions for sorting and
reading the entries.

Setting Up API Trace Data Sets
Before you start using the API trace facility, you must have at least one
pre-allocated, sequential data set to contain the trace data. APPC/MVS limits the
number of API trace data sets per z/OS system to fifty. This limit is imposed to
control the possible impact on performance; collecting and writing trace data are
resource-intensive activities that might affect not only APPC/MVS work, but also
other system work. On a test system, performance might not be a major concern;
on a production system, you may use API tracing options that further limit tracing
activity to an acceptable level, with little or no impact on performance.

In any case, because of the limited number of trace data sets, your installation
might have to consider various approaches to setting up the API trace data sets, to
ensure greatest efficiency and ease of use. Installation set-up affects what you need
to know before using the API trace facility:

v Security requirements for programmers who use the data sets

v Characteristics to select when you allocate the data sets

v Techniques for avoiding loss of data through wrapping

v Techniques for avoiding loss of data when APPC/MVS suspends tracing activity

v Suggestions that might increase efficient use of the trace data sets.

Getting Access to APPC/MVS Resources for Tracing Activity
What you need to do to access APPC/MVS resources depends on a number of
factors:

Diagnosing Problems with APPC/MVS TPs

6-8 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v If your installation uses RACF or an equivalent security product to protect
APPC/MVS resources, you might need access to one or more of the following:

– The API trace facility resource

– The API trace data sets

– The APPC/MVS LUs and TPs to be traced.

z/OS MVS Planning: APPC/MVS Management contains more details about these
security requirements.

v If your installation has many application programmers, it might choose to have a
system programmer set up the all data sets for API tracing activity. If so, you
need to have UPDATE access to the data sets before you can start tracing.
Otherwise, you may create your own trace data sets; in this case, no special
authority is required.

v Again, for a large population of application programmers, your installation might
have to require you to share the same trace data set with other programmers. If
you and others share the same data set, and want to trace TPs concurrently, be
aware of the following:

– Although APPC/MVS allows multiple ATBTRACE START requests while the
data set is open and traces are active, all requests have to be issued from the
same user ID from which the first request was issued. Otherwise, the data set
is considered in use, and the START request fails.

– Depending on your installation’s security policies, more than one user may
issue a STOP request for the data set. Although this flexibility can prove
useful in critical situations, it might pose problems if more than one
programmer has requested concurrent tracing activity for the data set. A
STOP request stops all active traces for the data set, so issuing a STOP
request might adversely affect someone else’s work.

Determining Data Set Characteristics
APPC/MVS requires API trace data sets to be pre-allocated and sequential, with a
block size of 4096 or larger. (The block size requirement applies only if you specify
the BLKSIZE operand.) If you already have data sets that meet those requirements,
you might be able to use them without having to allocate others. Whether you are
using existing data sets, or setting up new data sets, keep the following points in
mind:

v APPC/MVS uses only primary space for trace data sets. If tracing activity is not
stopped before APPC/MVS reaches the end of the primary space, and the data
set resides on DASD, APPC/MVS begins wrapping the trace data by returning to
the beginning of the data set, and overwriting older trace entries with more recent
entries. APPC/MVS does not indicate how many times wrapping occurs.

v APPC/MVS uses variable blocked record format, regardless of the format
specified during allocation, but does use the block size, if you specify the
BLKSIZE operand. Depending on the specified block size, and I/O contention,
APPC/MVS might collect trace data faster than it can write that data to the data
set. When this backlog of collected data becomes too large, APPC/MVS
temporarily stops collecting trace data until it can finish writing the backlog to the
data set. APPC/MVS indicates any suspension of tracing activity through an entry
in the trace data.

Both of these situations result in the loss of trace data, which might hamper your
ability to diagnose problems with the TPs being traced. They also might make
reading the trace data more difficult. Fortunately, several techniques can help you
reduce the possibility of losing trace data in either situation, and reduce the relative
complexity of interpreting trace data.

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-9

Avoiding Loss of Data through Wrapping
To avoid losing trace data through wrapping, you need to make sure the primary
space allocated for the data set is sufficient to contain all the trace entries.
Determining the amount of primary space required might be a trial-and-error
process, depending on how accurately you can estimate:

v The number of LU/TP (and possibly user ID) combinations that will be traced into
a particular data set. APPC/MVS does not limit the number of unique LU/TP
combinations specified for tracing into a particular data set, but the more you
specify, the greater the chance that wrapping will occur.

v The number of calls your TP issues for APPC/MVS or CPI-C services. The more
calls your TP issues (especially asynchronous calls), the more trace data will be
generated.

v How many instances of the TP run. If you have a TP that might run many times
while tracing is on, the cumulative effect of its calls might easily fill the data set.

You might have to run a TP and review the collected trace data several times, and
adjust the primary space accordingly, before determining an adequate amount of
primary space. (See “Reading Trace Entries When Wrapping Occurred” on
page 6-36 if you need to determine whether wrapping has occurred.)

An alternative, which might be easier than determining the primary space for DASD,
is to use a tape data set for the trace data. With tape, APPC/MVS can write trace
entries into a total of five volumes. If you need more space, you can allocate the
tape with a volume count, which increases the total to 255 volumes. The
disadvantage to this approach is reduced usability: the trace data on tape has to be
moved or copied over to DASD before you can view it.

Avoiding Loss of Data through Suspension of Tracing Activity
To avoid losing trace data because APPC/MVS has to suspend tracing activity, you
may try any combination of the following tactics:

v Allow APPC/MVS to determine the optimal block size for the device on which the
data set is allocated. To do so, allocate the data set without specifying the
BLKSIZE operand.

v Make sure the API trace data sets reside on volumes that are not used heavily
by other subsystems or applications. Separating trace data sets from other types
of data sets might help reduce contention or delays because of frequent use and
serialization.

v Filter ATBTRACE START requests as much as possible. For example, instead of
collecting trace data for all instances of a TP, restrict tracing activity to only the
conversations allocated for that TP with particular user IDs. Doing so can reduce
the amount of trace data that is generated for an LU/TP combination.

Some Suggestions for Data Set Setup...
The following suggestions might help you determine the most efficient, easiest ways
to approach API tracing. Some might not be feasible for your installation, but
experiment if you can, especially in a testing environment. What you learn under
those conditions might easily help you use API tracing most efficiently, when
efficiency is most important — during emergency situations in a production
environment.

v Do not use a specific block size for trace data sets; allow APPC/MVS to
determine the optimal size, to reduce or eliminate the need to suspend tracing
activity.

v Overestimate the primary space you need for the trace data set, or use a tape
data set and later switch to DASD, especially when first testing a TP. Doing so

Diagnosing Problems with APPC/MVS TPs

6-10 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

reduces the chances of wrapping trace entries, and possibly reduces the length
of the trial-and-error period to determine the size of an average trace data set for
tracing your installation’s set of TPs.

v Limit the number of unique LU/TP combinations being traced into a particular
data set. For example, use the optional USERID parameter to restrict tracing
activity to only specific users. Such limits can prevent:

– Loss of trace data through wrapping or suspension of tracing activity

– Complexity of interpreting trace data

– Adverse effects on performance.

v Try to limit the number of programmers sharing a data set for concurrent traces.
This tactic is another way to limit the number of unique LU/TP combinations for a
particular data set, so it offers the benefits of that limitation, as well as improving
productivity:

– You can view trace data as soon as you stop the tracing activity for the data
set; you do not have to worry about having someone prematurely stop your
trace, or about doing the same to another programmer.

– You do not have to separate your trace data from someone else’s, as well as
sorting the trace data for separate conversations.

Starting API Tracing Activity
Once you have trace data sets available for use, you can invoke the ATBTRACE
REXX exec to start tracing activity for a particular TP. To collect all the pertinent
trace data for this TP, you have to know more than just the TP name. Your
installation’s APPC configuration, and your TP’s partners and processing, determine
what values you supply on the ATBTRACE exec, and how many times, and where,
you might have to issue ATBTRACE START requests. At a minimum, you must
supply an LU name and TP name to uniquely identify the conversations to be
traced. This LU/TP combination is required because APPC/MVS allows multiple TP
profile files, each of which might define a TP with the same name, for a particular
z/OS system.

Before you begin issuing ATBTRACE START requests to activate tracing, you need
to answer the following questions to decide what values to supply on those START
requests:

v Does your TP initiate conversations with partners, or do the partners initiate the
conversations?

v Through which APPC/MVS LUs do inbound Allocate requests arrive for the TP?
How are the LUs configured; for example, are they members of a VTAM generic
resource group?

v Where do the TPs partners reside: On the same z/OS system? On a different
z/OS system? On an operating system other than MVS?

Once you have answered these questions, continue to the next topics, which cover:

v How APPC/MVS handles an ATBTRACE START request, which will help you
understand how many START requests you need to issue, and with what values

v Suggestions that might increase programmer productivity and efficient use of the
API trace facility.

How APPC/MVS Handles an ATBTRACE START Request
Suppose your installation has the following configuration, which is illustrated in
Figure 6-1 on page 6-12:

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-11

v A sysplex of z/OS systems, with APPC/MVS running on each (for simplicity, only
two are shown)

v A connected network of OS/2 workstations (for simplicity, only two are shown)

v One set of TP profile files shared by both z/OS systems

v One side information file shared by both z/OS systems

v One set of APPC/MVS LUs in a VTAM generic resource group named MVSLU.

Given that configuration, suppose you issue the following ATBTRACE START
request on system MVS01, to collect trace data for TPA’s conversations:
ATBTRACE START DSN(TRACE.DS01) LU(LUA) TP(TPA)

Once it finishes processing the START request, APPC/MVS on the MVS01 system
compares these LU name and TP name values with those specified (explicitly or
implicitly) on all inbound and outbound requests to establish a conversation. If the
values match, APPC/MVS collects the trace data for:

v All supported APPC/MVS or CPI-C calls that TPA issues.

v All supported APPC/MVS or CPI-C calls that TPA’s partner TP issues for its
conversation with TPA, only if the following are true:

– The partner issued the Allocate call to establish a conversation with TPA.

MVS02MVS01

OS/2 workstation OS/2 workstation

TP Profile Files Side Information
TRACE.DS01 TRACE.DS02

TPNAME(TPA) SYSTEM
TPNAME(TPA) USERID(SAUL)
TPNAME(TPA) USERID(FRED)

DESTNAME(NYC35TH)
MODENAME(MODE3)
TPNAME(TPA)
PARTNER_LU(MVSLU)

LUF

LUE

LUB

LUA

OSLUA OSLUB

TPA

TPA

TPD

TPB

ATBTRACE invoker ATBTRACE invoker

TPC

MVSLU

LUC LUD

Figure 6-1. Sample Installation Configuration

Diagnosing Problems with APPC/MVS TPs

6-12 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

– The partner itself did not receive control because of an inbound Allocate
request.

– The partner resides on the same z/OS system as TPA.

If one of those conditions is false, APPC/MVS provides trace data for only the
calls issued by TPA.

Read through the following scenarios to understand the implications of APPC/MVS
processing for START requests.

Timing: When Tracing Starts: In Figure 6-2 on page 6-14, if TPB allocates a
conversation with its partner TPA (1a) before you issue the START request (2),
APPC/MVS does not provide any trace data for that conversation, even though the
LU and TP values match. APPC/MVS provides trace data only for conversations
that are established after it finishes processing a START request.

Generally speaking, a conversation is established when a program issues an
Allocate call or, in the case of APPC/MVS servers, a Register_for_Allocates call.
When the ATBTRACE START request is issued before the conversation is
established, trace data begins with a trace entry for the Allocate or
Register_for_Allocates call.

For APPC/MVS TPs that issue CPI-C verbs, however, a conversation is established
when either:

v The TP issues CMINIT, specifying a valid symbolic destination name. In this
case, trace data begins with a trace entry for the CMINIT call.

v The TP issues the last CPI-C call to set either the partner LU name (CMSPLN)
or TP name (CMSTPN). For example, suppose the TP issues the following calls
in sequence:

1. CMINIT, without specifying a symbolic destination name

2. CMSPLN, to set the partner LU name

3. CMSTPN, to set the TP name.

In this case, trace activity begins with the CMSTPN call.

In Figure 6-2 on page 6-14, because TPD does not reside on MVS01, the only trace
entry for TPD’s side of the conversation is an FMH-5 received at LUA from OSLUA
(3a). If TPD did reside on MVS01, trace data would include an ATB60055I message
for the CMSTPN call, and messages for subsequent calls by TPD.

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-13

APPC/MVS does not start tracing activity at all for the LU/TP combination, if the call
to establish the conversation contains partner LU name or TP name values that do
not match the LU/TP combination specified through the ATBTRACE START request.

Using VTAM Generic Resource Names: If a TP issues an Allocate call specifying
the VTAM generic resource name MVSLU, that call can be directed to any of the
LUs in the generic resource group. Because you cannot always predict which LU
will handle the conversation, you run the risk of not tracing the conversation unless
you:

v Specify the generic resource name MVSLU on the ATBTRACE START request,
and

v Issue the START request on each system on which an MVSLU group member
resides.

For example, suppose you entered a START request specifying TPA and LUC on
MVS01, but did not enter the same START request on MVS02. Given the
configuration in Figure 6-3 on page 6-15, the Allocate request from TPC is directed
to LUD, so you would not get any trace data for TPA’s calls for its conversation with
TPC.

Figure 6-3 on page 6-15 shows sample ATBTRACE START requests that IBM
recommends for TPs running on MVS LUs in a generic resource group. If your
installation uses a VTAM generic resource name for all the LUs on which TPA might
run, and you want to collect trace data for all of TPA’s conversations regardless of
the LU selected to handle the inbound Allocate call, do the following:

v Specify the VTAM generic resource name for the LU keyword value on the
START request.

v If the LUs in the generic resource group reside on more than one MVS system:

MVS01

OS/2 workstation

TRACE.DS01

LUB

LUA

MVSLU

ATBALC2(...

ATBGETC...

ATBGETC...

ATBTRACE START
DS('trace.ds')
LU(LUA) TP(TPA)

LUA...TPA...)

LUC

OSLUA

TPA

TPA

TPD

TPB

ATBTRACE invoker

CMINIT(...

CMALLC(...
CMSEND(...

blank sym_dest_name...)
CMSPLN(...LUA...)
CMSTPN(...TPA...)

Fi gure for Sample
Configuration

gure

ATB60051I API TRACE

ATB60062I AN FMH-5...

ATB60055I ENTRY TO

WAS STARTED... FOR:

FROM PARTNER LU
OSLUA

THE ATBGETC
SERVICE

LU: LUA
TP: TPA
SYMDEST: N/A
USERID: *

...
...

1a

2

3a

3a

3b

1b

3b

2

Figure 6-2. Timing the Start of API Tracing Activity

Diagnosing Problems with APPC/MVS TPs

6-14 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

– Issue the START request on each z/OS system.

– For each START request, specify a different trace data set, because each
data set can be in use by only one system at a time.

z/OS MVS Planning: APPC/MVS Management contains possible security
requirements and general information about VTAM generic resource support for
APPC/MVS LUs.

Using Symbolic Destination Names: In Figure 6-4 on page 6-16, if TPC issues
an Allocate call specifying a symbolic destination name, NYC35TH, that resolves to
LUA and TPA, APPC/MVS provides trace data for that conversation. Even though
you specified the LU and TP keywords, instead of the SYMDEST keyword, on the
START request, APPC/MVS provides trace data for the conversation because the
LU and TP values match. If you know that TPA’s partners allocate their
conversations using a symbolic destination name, however, IBM recommends that
you use the SYMDEST keyword and value on the ATBTRACE START request.

MVS02MVS01

TRACE.DS01 TRACE.DS02

LUF

LUE

LUB

LUA

MVSLU

ATBALC2(...

ATBTRACE START ATBTRACE START
DS('trace.ds01') DS('trace.ds02')

MVSLU...)

LU(MVSLU) TP(TPA) LU(MVSLU) TP(TPA)

LUDLUC

TPA

TPATPB

ATBTRACE invoker ATBTRACE invoker

TPC

Fi gure for Sample Configurationgure

Figure 6-3. Using VTAM Generic Resource Names

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-15

Collecting Trace Data for Concurrent Conversations: If you want to collect
trace data for multiple outbound conversations allocated by a single program, you
might be able to do so with only one ATBTRACE START request, even if the LU/TP
pairs for the conversations do not match the pair specified on that START request.
APPC/MVS automatically collects trace data for a program’s additional outbound
conversations, as long as both of the following are true:

1. An ATBTRACE START request, specifying an LU/TP pair for which the program
allocates a conversation, was issued on the system on which the program runs

2. APPC/MVS has already started collecting trace data for the LU/TP pair specified
on the START request (that is, the program allocates the conversation with the
LU/TP pair), before the program allocates the additional outbound
conversations.

For example, in Figure 6-5 on page 6-17, suppose that you have already entered a
START request for LUA and TPA (1). Later, TPB allocates a conversation with TPA,
and tracing begins (2). While still conversing with TPA, TPB allocates a
conversation with TPC (3).

MVS02MVS01
Side Information

DESTNAME(NYC35TH)
MODENAME(MODE3)
TPNAME(TPA)
PARTNER_LU(LUA)

LUF

LUE

LUB

LUA

MVSLU

ATBALC2(...

ATBTRACE START
DS('trace.ds01')

NYC35TH...)

LU(LUA) TP(TPA)

LUDLUC

TPA

TPB

ATBTRACE invoker ATBTRACE invoker

TPC

Fi gure for Sample
Configuration

gure

Figure 6-4. Using Symbolic Destination Names

Diagnosing Problems with APPC/MVS TPs

6-16 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

APPC/MVS collects trace data for TPB’s calls for its conversation with TPA,
because of the START request already entered; APPC/MVS automatically includes
TPB’s calls for its conversation with TPC, because tracing has already begun for
the LUA/TPA pair.

If, however, TPB allocated the conversation with LUF/TPC before the conversation
with LUA/TPA, APPC/MVS does not trace the calls issued for the LUF/TPC
conversation. Unless you can guarantee that the program first allocates the
conversation for the LU/TP pair specified on the START request, you need to enter
additional START requests, such as:
ATBTRACE START DSN(TRACE.DS01) LU(LUF) TP(TPC)

Note that, in this case, you can use the same trace data set for a START request
with a different LU/TP combination. This capability allows you to collect, in one
place, the trace data for an application program that holds concurrent conversations
with different TPs running on different LUs.

If you want to trace the calls made on both sides of a conversation that spans z/OS
systems, such as the conversation between TPB and TPC shown in Figure 6-6 on
page 6-18, enter:

v A START request for the LU/TP combination on one system, specifying one trace
data set; for example, LUF/TPC (1a).

v A START request for the LU/TP combination on the other system, specifying a
different trace data set, because a trace data set may be in use by only one
system at a time; for example, LUF/TPC (1b).

When the conversation between TPB and TPC takes place:

v TRACE.DS01 will contain entries for the calls that TPB issues, and FMH-5
entries for calls received from TPC.

v TRACE.DS02 will contain entries for the calls that TPC issues, and FMH-5
entries for calls received from TPB.

MVS01 MVS02

TRACE.DS01

LUB

LUA

MVSLU

ATBALC2(...

ATBALC2(...

ATBTRACE START
DS(’trace.ds01’)
LU(LUA) TP(TPA)

LUA...TPA...)

LUF...TPC...)

LUC LUD

TPA TPC

TPB

ATBTRACE invoker ATBTRACE invoker

Fi gure for Sample
Configuration

gure

ATB60051I API TRACE

ATB60055I ENTRY TO

ATB60055I ENTRY TO

WAS STARTED... FOR:

THE ATBALC2 SERVICE

THE ATBALC2 SERVICE

LU: LUA
TP: TPA
SYMDEST: N/A
USERID: *

...
...

...

LUE

LUF

1

1
2

2

3

3

Figure 6-5. Collecting API Trace Data for Concurrent Conversations

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-17

Filtering Trace Data by User ID: By default, an ATBTRACE START request
specifies USERID(*), which results in trace data for all conversations for the LU and
TP combination, including conversations allocated without a user ID. To filter the
amount of trace data, you may specify either the USERID or SECNONE keyword
on the START request. With the USERID keyword, for example, you could issue the
following request on system MVS01:
ATBTRACE START DSN(TRACE.DS) LU(LUA) TP(TPA) USERID(GOODWIN)

In this case, APPC/MVS on the MVS01 system compares not only these LU name
and TP name values, but also the user ID value, with those specified (explicitly or
implicitly) on both inbound and outbound Allocate requests. So the trace data you
collect consists only of those conversations for which the LU, TP, and user ID
values for the START and Allocate requests match.

If a TP allocates a conversation with TPA, specifying a security type with security
fields that LUA cannot support, the system downgrades the Allocate request by
stripping out the security fields that are not supported. For example, if a TP issues
the Allocate request with security_same, but the APPL definition statement for the
LUA specifies CONV or NONE, the system strips out the user ID value specified on
the Allocate request. In this case, APPC/MVS does not trace the conversations
because the user ID value on the START request (user ID GOODWIN) does not
match the user ID value on the inbound Allocate request (the user ID is missing).

If you want to make sure you are collecting trace data for inbound conversations for
which the user ID is not passed, enter another START request for the LU/TP
combination, this time specifying the SECNONE keyword instead of USERID. If you
do so, APPC/MVS traces all conversations with matching LU/TP values and a
Security_type of security_none, along with conversations with matching

MVS01 MVS02

TRACE.DS01

TRACE.DS02

LUB

LUA

MVSLU

ATBALC2(...

ATBALC2(...

ATBTRACE START

ATBTRACE START

ATBTRACE START
DS('trace.ds01')

DS('trace.ds01')

DS('trace.ds02')
LU(LUA) TP(TPA)

LU(LUF) TP(TPC)

LU(LUF) TP(TPC)

LUA...TPA...)

LUF...TPC...)

LUC LUD

TPA

TPC
TPB

ATBTRACE invoker ATBTRACE invoker

Fi gure for Sample
Configuration

gure

ATB60051I API TRACE

ATB60051I API TRACE

ATB60051I API TRACE WAS STARTED... FOR:

ATB60062I AN FMH-5 WAS RECEIVED...

ATB60055I ENTRY TO

ATB60055I ENTRY TO

WAS STARTED... FOR:

WAS STARTED... FOR:

THE ATBALC2 SERVICE

THE ATBALC2 SERVICE

LU: LUA
TP: TPA
SYMDEST: N/A
USERID: *

LU: LUF
TP: TPC
SYMDEST: N/A
USERID: *

LU: LUF
TP: TPC
SYMDEST: N/A
USERID: *

FROM PARTNER LU LUB.

...
...

...

LUE

LUF

1

1a

1a

1b

1b

1

2

2

3

3

3

Figure 6-6. Collecting API Trace Data for Concurrent Conversations

Diagnosing Problems with APPC/MVS TPs

6-18 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

LU/TP/USERID values. Even though the resulting trace data might contain
information for some extraneous security_none conversations, you probably have
less trace data to sort than if you used the default of tracing all conversations for
the LU/TP combination.

Collecting Trace Data for Security_None Conversations: The scenario in
“Filtering Trace Data by User ID” on page 6-18 illustrates only one possible use for
the SECNONE keyword; you also may use it when your only interest is in
conversations with a Security_type of security_none. Just as the USERID keyword
allows you to filter trace data by a particular user ID, specifying the SECNONE
keyword for an LU/TP combination allows you to collect trace data for only those
inbound and outbound conversations that are established with a Security_type of
security_none.

Collecting Trace Data for TPs with Multiple Levels: In Figure 6-7, notice that
TPA is defined in more than one TP profile file, with different TP levels. Because
APPC/MVS does not provide the ability to identify which level of TP you want to
trace, APPC/MVS traces all conversations established for the LUA/TPA
combination, regardless of the TP level. For example, TPB allocates to a user-level
instance of TPA (2 and 2a), whereas TPC allocates to a system-level instance of
TPA (3 and 3a).

The trace data set contains API trace data for both levels, which might make
interpreting the trace data more difficult, especially if TPA’s processing varies by

MVS01

TP Profile Files

TRACE.DS01

MVSLU

ATBALC2(...

ATBGETC(...

ATBGETC(...

ATBALC2(...

ATBTRACE START
DS('trace.ds01')
LU(LUA) TP(TPA)

LUA...TPA...
USERID(SAULP)...)

LUA...TPA...)

LUC

LUB

LUATPA

TPA

TPB

ATBTRACE invoker

TPC

Fi gure for Sample
Configuration

gure

2

2

2a

3a

3a

2a

1

1

3

3

TPNAME(TPA) SYSTEM
TPNAME(TPA) USERID(SAUL)
TPNAME(TPA) USERID(FRED)

ATB60051I API TRACE

ATB60055I ENTRY TO

ATB60055I ENTRY TO

ATB60055I ENTRY TO

ATB60055I ENTRY TO

WAS STARTED... FOR:

THE ATBALC2 SERVICE

THE ATBGETC SERVICE

THE ATBGETC SERVICE

THE ATBALC2 SERVICE

JOB NAME: SAULP

JOB NAME: SAULP

JOB NAME: SYSJOB

JOB NAME: SYSJOB

LU: LUA
TP: TPA
SYMDEST: N/A
USERID: *

...
...

...
...

...
...

...
...

Figure 6-7. Collecting API Trace Data for TPs with Multiple Levels

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-19

level. See “Determining the Level of TP Traced” on page 6-36 for advice on
distinguishing trace data for different levels of the TP.

Some Suggestions for ATBTRACE START Requests...
Given the scenarios in “How APPC/MVS Handles an ATBTRACE START Request”
on page 6-11, issuing ATBTRACE START requests might seem like tedious work,
but how much you have to do depends on the circumstances. For example, if you
know that only one user is experiencing problems with TPA’s processing, entering
one START request with the USERID keyword is probably sufficient to collect all the
pertinent trace data. However, if TPA’s processing is dependent on correct
processing between TPB and TPC, you might need to enter additional START
requests for TPB or TPC as well, to collect trace data to determine whether the
problem exists in the conversation between TPB and TPC.

Together with your knowledge of the TPs’ processing and the symptoms that users
experience, the flexibility that the API trace facility provides can help you more
easily and efficiently start collecting trace data. The following list includes some
suggestions that might help you decide how to use the API trace facility:

v If your installation is using VTAM generic resource support for APPC/MVS LUs,
use the generic resource name as the value for the LU keyword on the
ATBTRACE START request. This capability means that, with only one START
request, you can collect trace data when an inbound Allocate request for the
specified TP arrives at any of the LUs in the generic resource group. (If the group
spans systems, however, you must enter the START request on each system
with a member of the generic resource group.)

z/OS MVS Planning: APPC/MVS Management contains possible security
requirements related to using the API trace facility, and general information about
VTAM generic resource support for the installation.

v Consider invoking the ATBTRACE exec through TP profile JCL when you want to
collect trace data each time the TP runs. Using TP profile JCL ensures that the
START request is issued before the conversation is completely established;
however, if another instance of the TP is allocated while the first instance is still
running, the subsequent ATBTRACE START request will fail because the trace
data set is already in use by another user.

v In a production environment, when speed and efficiency are critical:

– Use TSO/E implicit or explicit invocations to start tracing. These invocation
methods are ideally suited for dynamically controlling tracing activity for only a
few LU/TP combinations. These methods allow you to minimize performance
impact by limiting tracing activity to specific LU/TP combinations, and by
limiting the amount of time tracing is active.

– If your installation is experiencing problems with multiple TPs on multiple
systems, you might start traces through a high-level language program or
batch job, rather than issuing multiple START requests through TSO/E.
However, you could still easily stop tracing activity through TSO/E, regardless
of the method you used to start tracing.

Using the ATBTRACE REXX Exec
The interface to the API trace facility is the ATBTRACE REXX exec. Through the
ATBTRACE exec, you control API tracing activity by issuing START and STOP
requests, or obtain tracing status by issuing LIST requests.

The following topics describe:

v The programming requirements for and output of the ATBTRACE REXX exec,
which is the programming interface for the API trace facility

Diagnosing Problems with APPC/MVS TPs

6-20 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v The methods of invoking the ATBTRACE REXX exec, and examples of each

v The syntax of and parameter descriptions for each type of ATBTRACE request.

Programming Considerations
Except where noted in the following topics, the environmental requirements,
restrictions, and return codes are the same for all types of ATBTRACE request,
regardless of the method you use to invoke the ATBTRACE REXX exec.

Requirements:

Minimum authorization: Problem state with any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller cannot hold any locks

Restrictions:
v For all types of ATBTRACE requests, the caller cannot have any enabled

unlocked (EUT) functional recovery routines (FRRs) established. For more
information about EUT FRRs, see the section on providing recovery in z/OS MVS
Programming: Authorized Assembler Services Guide.

v Depending on your installation’s security policy, START and STOP requests
might require READ access to the ATBTRACE security profile. If APPC/MVS
returns an ATB6xxxxI message indicating security violations, see your system
programmer or system administrator for assistance.

Output from the API Trace Facility
The API trace facility produces:

v Return codes to indicate successful or unsuccessful processing of an ATBTRACE
START, STOP, or LIST request

v Status or error messages to provide additional information to issuers of START,
STOP, or LIST requests

v Trace data in the form of ATB6xxxxI messages.

The following sections provide details about return codes and status or error
messages; “Chapter 10. API Trace Facility Messages” on page 10-1 describes all of
the messages for the API trace facility.

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-21

Return Codes:

Hexadecimal
Return Code

Meaning

0 The ATBTRACE START, STOP, or LIST request was processed
successfully. Additional results depend on the type of request:

v For a START request, APPC/MVS will collect trace data for the LU/TP
combination (by optional user ID, if the USERID keyword was
specified on the request), for conversations established after
ATBTRACE request processing completed.

v For a STOP request, APPC/MVS stopped all active traces for the
data set specified on the request, and closed the trace data set.

v For a LIST request, APPC/MVS returned the list results for the data
set specified on the request, or for all trace data sets in this system.
The location of the list results depends on the method used to invoke
the ATBTRACE REXX exec.

8 The ATBTRACE START, STOP, or LIST request was not processed
successfully, for the reason indicated by an accompanying ATB600xxI
message. The location of the ATB message depends on the method
used to invoke the ATBTRACE REXX exec.

Messages: In addition to writing trace data in the form of ATB6xxxxI messages,
the API trace facility also issues messages to report:

v Successful and unsuccessful completion of an ATBTRACE START, STOP, or
LIST request.

v Syntax errors in a START, STOP, or LIST request.

v Incorrect programming environment for ATBTRACE invokers.

v Incorrect security authorization for START and STOP requests.

v Allocation or other problems with the data set specified on START and STOP
requests.

v Timing or sequence problems (for example, delays in processing requests,
START requests issued before STOP processing completes, and so on).

v Suspension or termination of API tracing activity by APPC/MVS. These conditions
might result in the loss of trace data.

The method you use to invoke an ATBTRACE request determines where
APPC/MVS returns these status and error messages; see sections of “Methods of
Invoking the ATBTRACE REXX Exec” for details.

Methods of Invoking the ATBTRACE REXX Exec
To start, stop, or list API tracing activity, you may invoke the ATBTRACE REXX
exec:

v In the TSO/E foreground, explicitly or implicitly, through the EXEC command

v In MVS batch, through JCL

v Through the JCL in an APPC/MVS TP profile

v From a high-level language program.

Which method you choose depends on the circumstances. You do not need to
issue all requests through the same method; for example, you can start API tracing
through JCL, but stop that tracing activity by issuing the TSO/E EXEC command.
“Some Suggestions for ATBTRACE START Requests...” on page 6-20 might help

Diagnosing Problems with APPC/MVS TPs

6-22 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

you decide which methods to use; individual descriptions of t he START, STOP, and
LIST requests contain additional examples of circumstances for selecting a
particular invocation method.

The following sections contain APPC/MVS-specific requirements and examples for
each method of invoking the ATBTRACE REXX exec. Depending on the method,
you might have to refer to additional sources:

v z/OS TSO/E REXX User’s Guide for general information about invoking execs in
the foreground, in batch, and from a high-level language program.

v z/OS TSO/E REXX Reference for general programming requirements (such as
register contents on entry) for invoking execs in batch and from programs.

v z/OS MVS Planning: APPC/MVS Management for information about TP profile
files.

v z/OS MVS JCL Reference for information about JCL.

Invoking the ATBTRACE Exec in the TSO/E Foreground: Use the TSO/E EXEC
command processor to either explicitly or implicitly invoke the ATBTRACE REXX
exec in the TSO/E foreground. The EXEC command runs non-compiled programs in
TSO/E.

The ATBTRACE exec displays ATB6xxxxI status and error messages on the
terminal from which you invoked the exec.

Unlike APPC/MVS callable services, ATBTRACE requests issued from TSO/E are
not protected from attention interrupts, so you can interrupt the trace request
processing before APPC/MVS completes it. APPC/MVS defers the interrupt only
until processing progresses to a point at which the interrupt will not cause
contention for a system resource.

Explicitly Invoking the ATBTRACE Exec: To explicitly invoke the ATBTRACE exec,
enter the EXEC command followed by the name of the data set that contains the
exec, SYS1.SBLSCLI0, followed by parameters enclosed in single quotes and the
keyword “exec”. For example:

v To start API tracing, specifying a fully qualified data set name for the trace data
set, enter on the command line:
EXEC ’SYS1.SBLSCLI0(atbtrace)’

’start dataset(’’ userx.trace.data’’) lu(lux) tp(tpx) userid(userx)’ exec

Note that you must enclose a fully qualified trace data set name within two pairs
of single quotes.

v To start API tracing, specifying an unqualified data set name, enter on the
command line:
EXEC ’SYS1.SBLSCLI0(atbtrace)’

’start dataset(trace.data) lu(lux) tp(tpx) userid(userx)’ exec

The trace data set name will be prefixed with a high-level qualifier that is the user
ID of the invoker of the ATBTRACE exec.

Implicitly Invoking the ATBTRACE Exec: To implicitly invoke the ATBTRACE exec,
perform the following steps:

1. Allocate the SYS1.SBLSCLI0 data set to the system file SYSEXEC or
SYSPROC. For example:
alloc f(sysexec) da(’SYS1.SBLSCLI0’)

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-23

2. Enter the exec name, followed by its parameters, on the command line:
atbtrace start dataset(’userx.trace.data’) lu(lux) tp(tpx) userid(userx)

Note that, unlike the explicit invocation, you need only enclose a fully qualified trace
data set name within single quotes. However, an unqualified data set name is
treated the same way for explicit and implicit invocations: you specify an unqualified
name without enclosing it in any quotes, and the name will be prefixed with a
high-level qualifier that is the user ID of the invoker of the ATBTRACE exec.

Invoking the ATBTRACE Exec in MVS Batch: To run the ATBTRACE exec in
batch mode, you have two choices: using IRXJCL to run ATBTRACE in the TSO/E
background, or using IKJEFT01 to run ATBTRACE in a non-TSO/E address space.
For either choice:

v You need to include a SYSEXEC DD statement in the JCL to specify
SYS1.SBLSCLI0, the data set that contains the ATBTRACE exec

v ATB6xxxxI status and error messages, and information resulting from an
ATBTRACE request, are written to the output device specified through the
SYSTSPRT DD statement (either the invoker’s job log, or a data set)

v API trace data entries are written to the data set specified through the DATASET
parameter on ATBTRACE.

Using IRXJCL: To invoke the ATBTRACE exec using IRXJCL (to run the exec in a
non-TSO/E address space), specify the following on the JCL EXEC statement:

1. IRXJCL on the PGM parameter, and

2. ATBTRACE and its parameters on the PARM parameter.

For example, the following contains JCL to submit an ATBTRACE LIST request for
active traces for all trace data sets on the system:
//JOEA JOB MSGLEVEL=(1,1)
//*
//* EXAMPLE OF LISTING ALL TRACES BY INVOKING
//* ATBTRACE LIST USING IRXJCL
//*
//* LIST OF ALL THE API TRACES WILL BE WRITTEN
//* EITHER TO JOBLOG
//* SYSTSPRT DD SYSOUT=A
//* OR TO USER SPECIFIED DATA SET
//* SYSTSPRT DD DSN=XX.YY
//*
//*
//TRACE EXEC PGM=IRXJCL,
// PARM=’ATBTRACE LIST’
//SYSTSPRT DD DSN=JOE.APILIST.DATASET,DISP=OLD
//SYSEXEC DD DSN=SYS1.SBLSCLI0,DISP=SHR
/*

Another example contains JCL to submit an ATBTRACE LIST request for active
traces of only one trace data set:
//JOEA JOB MSGLEVEL=(1,1)
//*
//* EXAMPLE OF LISTING TRACES FOR A SINGLE DATA SET
//* ATBTRACE LIST USING IRXJCL.
//*
//* LIST OF ALL THE API TRACES STARTED WITH THE
//* DATA SET SUPPLIED ON ATBTRACE LIST REQUEST
//* WILL BE WRITTEN
//* EITHER TO JOBLOG
//* SYSTSPRT DD SYSOUT=A
//* OR TO USER SPECIFIED DATA SET

Diagnosing Problems with APPC/MVS TPs

6-24 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

//* SYSTSPRT DD DSN=XX.YY
//*
//*
//TRACE EXEC PGM=IRXJCL,
// PARM=’ATBTRACE LIST DS(’’ JOE.TRACE’’)’
//SYSTSPRT DD DSN=JOE.APILIST.DATASET,DISP=OLD
//SYSEXEC DD DSN=SYS1.SBLSCLI0,DISP=SHR
/*

Using IKJEFT01: To invoke the ATBTRACE exec using IKJEFT01 (to run the exec
in the TSO/E background), specify the following on the JCL EXEC statement:

1. IKJEFT01 on the PGM parameter, and

2. ATBTRACE and its parameters either:

v On the PARM parameter, or

v Through explicit or implicit use of the EXEC command in the input stream.

For example, the following contains JCL to submit an ATBTRACE STOP request:
//JOEA JOB MSGLEVEL=(1,1)
//*
//* EXAMPLE OF STOPPING A TRACE BY INVOKING
//* ATBTRACE IN BATCH USING IKJEFT01 WHICH
//* WILL BRING UP A TSO/E ENVIRONMENT VIA
//* THE TMP
//*
//* MESSAGES FROM THE REXX EXEC WILL BE WRITTEN
//* EITHER TO JOBLOG
//* SYSTSPRT DD SYSOUT=A
//* OR TO USER SPECIFIED DATA SET
//* SYSTSPRT DD DSN=XX.YY
//*
//*
//TRACE EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=4096K
//SYSEXEC DD DSN=SYS1.SBLSCLI0,DISP=SHR
//SYSTSPRT DD SYSOUT=A
//SYSTSIN DD *
%ATBTRACE STOP DATASET(’JOE.TRACE’)
/*

Invoking the ATBTRACE Exec from an HLL Program: To invoke the
ATBTRACE exec from a high-level language (HLL) program, code the program to
load and call the IRXJCL program, passing a parameter list that contains
ATBTRACE and its parameters.

ATB6xxxxI status and error messages, and information resulting from an
ATBTRACE request, are written to the output device specified through the
SYSTSPRT DD statement (either the invoker’s job log, or a data set). API trace
data entries are written to the data set specified through the DATASET parameter
on ATBTRACE.

For example, the following PL/I program, JCLXMP1, uses IRXJCL to invoke the
ATBTRACE exec to start tracing the LU/TP combination LUX and TPX:
JCLXMP1 : Procedure Options (Main);
/* Function: Call a REXX exec from a PL/I program using IRXJCL */
/* Note: This example is for PL/I Version 2. */

DCL IRXJCL EXTERNAL OPTIONS(RETCODE, ASSEMBLER);
DCL 1 PARM_STRUCT, /* Parm to pass to IRXJCL */

5 PARM_LNG BIN FIXED (15), /* Length of the parameter */
5 PARM_STR CHAR (53); /* String passed to IRXJCL */

DCL PLIRETV BUILTIN; /* Defines the return code built-in*/
PARM_LNG = LENGTH(PARM_STR); /* Set the length of string */

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-25

/* */
PARM_STR = ’ATBTRACE START DATASET(A.B) LU(LUX) TP(TPX) USERID(*)’;/*

Set string value to the exec to
be invoked followed by the exec’s
arguments */

FETCH IRXJCL; /* Load the address of entry point */
CALL IRXJCL (PARM_STRUCT); /* Call IRXJCL to execute the REXX

exec and pass the argument */
PUT SKIP EDIT (’Return code from IRXJCL was:’,PLIRETV) (a, f(4));

/* Print out the return code from
the exec ATBTRACE */

END ; /* End of program */

The following JCL runs program JCLXMP1:
//USERID JOB MSGLEVEL=(1,1)
//*
//* EXAMPLE OF INVOKING ATBTRACE USING A HIGH
//* LEVEL PROGRAM SUCH AS PL/I.
//*
//* MESSAGES FROM THE REXX EXEC WILL BE WRITTEN
//* EITHER TO JOBLOG
//* SYSTSPRT DD SYSOUT=A
//* OR TO USER SPECIFIED DATA SET
//* SYSTSPRT DD DSN=XX.YY
//*
//*
//TRACE EXEC PGM=JCLXMP1
//SYSTSPRT DD DSN=USERID.MESSAGE.DATASET,DISP=OLD
//SYSEXEC DD DSN=SYS1.SBLSCLI0,DISP=SHR
/*

Invoking the ATBTRACE Exec from TP Profile JCL: To invoke the ATBTRACE
exec from the JCL in a TP profile, specify the following on the JCL EXEC
statement:

1. IRXJCL on the PGM parameter, and

2. ATBTRACE and its parameters on the PARM parameter.

Also include a SYSEXEC DD statement in the JCL to specify SYS1.SBLSCLI0, the
data set that contains the ATBTRACE exec.

ATB6xxxxI status and error messages, and information resulting from an
ATBTRACE request, are written to the output device specified through the
SYSTSPRT DD statement (either the invoker’s job log, or a data set). API trace
data entries are written to the data set specified through the DATASET parameter
on ATBTRACE.

The following example invokes the APPC/MVS administration utility to add a TP
profile that contains JCL to:

v Invoke the ATBTRACE exec to start a trace for this TP,

v Run the inbound TP, and

v Invoke the ATBTRACE exec to stop tracing.
//TPADD JOB MSGLEVEL=(1,1)
//TPADD EXEC PGM=ATBSDFMU
//***/
//* EXAMPLE OF STARTING TRACE FROM TP PROFILE */
//* */
//* DEFINES A TP. ALL KEYWORDS ARE NOT SHOWN IN THIS EXAMPLE */
//* */
//* MESSAGES FROM THE REXX EXEC WILL BE WRITTEN */
//* EITHER TO JOBLOG */
//* SYSTSPRT DD SYSOUT=A */

Diagnosing Problems with APPC/MVS TPs

6-26 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

//* OR TO USER SPECIFIED DATA SET */
//* SYSTSPRT DD DSN=XX.YY */
//* */
//* STARTS API TRACING (TRACE DATA SET IS QUALIFIED WITH QUOTES) */
//* EXECUTES MYTPX PROGRAM */
//* STOPS API TRACING (TRACE DATA SET IS QUALIFIED WITH QUOTES) */
//***/
//SYSPRINT DD SYSOUT=*
//SYSSDLIB DD DSN=APPC.TP.DATASET,DISP=SHR
//SYSSDOUT DD SYSOUT=*
//SYSIN DD DATA

TPADD
TPNAME(TPX)

:
:

TPSCHED_DELIMITER(DLM1)
:
:

JCL_DELIMITER(DLM2)
//TPSTEP JOB ’TPNAME’,MSGLEVEL=(1,1)
//STARTTR EXEC PGM=IRXJCL,
// PARM=’ATBTRACE START DATASET(’’ JOE.TRACE’’) LU(LUX) TP(TPX)’
//SYSTSPRT DD SYSOUT=A
//SYSEXEC DD DSN=SYS1.SBLSCLI0,DISP=SHR
//*
//TPEXE EXEC PGM=MYTPX
//STEPLIB DD DSN=JOE.LOAD,DISP=SHR
//*
//STOPTR EXEC PGM=IRXJCL,
// PARM=’ATBTRACE STOP DATASET(’’ JOE.TRACE’’)’
//SYSTSPRT DD SYSOUT=A
//SYSEXEC DD DSN=SYS1.SBLSCLI0,DISP=SHR
//*
DLM2
DLM1
/*

Starting an API Trace
Through the ATBTRACE REXX exec, you may start an API trace for a particular
LU/TP combination, or LU/TP/USERID combination, specifying a data set to contain
the trace entries. Depending on the way your installation chose to set up API trace
data sets, to successfully issue a START request, you must:

v Specify a pre-allocated, sequential data set for the trace data

v Have the appropriate access to the data set.

If the data set is in use already, you must be able to either specify another data set,
or use the same user ID from which the first START request was issued for this
data set. If errors occur during START processing because of problems with the
data set, with your access authority, or with the API trace facility itself, APPC/MVS
returns an ATB6xxxxI message to inform the invoker of the START request.

When it successfully processes a START request, APPC/MVS returns message
ATB60035I to the issuer of the request to indicate successful completion, and writes
ATB60051I in the specified data set. This message contains a user ID and time
stamp to indicate who started this trace for this data set, and at what time.

Although coding the STOP and LIST requests is fairly simple, determining the
values to specify when coding START requests can be complicated because of a
number of factors. See “Starting API Tracing Activity” on page 6-11 for examples
and suggestions for starting API traces.

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-27

Selecting the Invocation Method for the ATBTRACE START Request: To start
API tracing activity, you may use any of the invocation methods described in
“Methods of Invoking the ATBTRACE REXX Exec” on page 6-22; reviewing the
examples and suggestions in “Starting API Tracing Activity” on page 6-11 might help
you select an appropriate method. Before issuing a START request, make sure you
are aware of the programming environment and restrictions described in
“Programming Considerations” on page 6-21.

Coding an ATBTRACE START Request: Use the following syntax diagram and
parameter descriptions to code an ATBTRACE request to start tracing a
conversation. Remember that, depending on the TPs involved in the conversation
you want to trace, you might have to issue more than one ATBTRACE request or
also invoke a trace facility on an operating system other than MVS.

ÊÊ ATBTRACE START DATASET (ds_name) Ê

Ê LU (lu_name) TP (tp_name)
SYMDEST (sym_dest_name)

Ê

Ê

*
USERID (user_id)

SECNONE

ÊÍ

Parameters

START
Specifies that API tracing is to start for the conversation identified by the other
parameters on the START request. APPC/MVS traces only those conversations
established after it successfully processes the START request, when the
inbound or outbound call to establish the conversation explicitly or implicitly
uses values for LU and TP (and possibly user ID) that exactly match those
specified on the START request.

DATASET(ds_name)
Specifies the data set that is to contain the trace data for the conversations to
be traced. You may use the abbreviations DA, DSNAME, DSN, or DS instead of
DATASET.

ds_name can be either the fully qualified or unqualified name of a pre-allocated,
sequential data set. A fully qualified name must be specified within single
quotes. When the data set name is specified without quotes, APPC/MVS adds a
high-level qualifier, the user ID of the ATBTRACE invoker, to the data set name.

When ATBTRACE is invoked in MVS batch mode, you must specify a fully
qualified data set name; otherwise, APPC/MVS rejects the ATBTRACE request.

LU(lu_name) TP(tp_name)
Specifies the LU and TP combination that APPC/MVS is to trace. When both of
the following conditions are true, APPC/MVS collects trace data for the
conversation:

v The LU keyword value matches the partner LU value passed (explicitly or
through a symbolic destination name) on the APPC/MVS Allocate,
Register_for_Allocates, or CPI-C Set_Partner_LU_Name service.

Diagnosing Problems with APPC/MVS TPs

6-28 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v The TP keyword value matches the partner TP value passed (explicitly or
through a symbolic destination name) on the APPC/MVS Allocate,
Register_for_Allocates, or CPI-C Set_TP_Name service.

lu_name is a 17-character field containing one of the following:

v A network-qualified LU name, in the form network_id.network_LU_name, in
which network_id is the 8-byte ID of the network, and network_LU_name is
the 8-byte local LU name

v An 8-byte local LU name

v A VTAM generic resource name.

tp_name is a 64-byte character field containing the name of a standard TP, a
multi-trans TP, a TP registered for test or a served TP. TP_name must exactly
match the name specified on Allocate requests, including case. TP_name
cannot be an SNA service TP name; APPC/MVS does not support tracing of
SNA service TPs.

The LU and TP keyword combination is mutually exclusive with the SYMDEST
keyword. You must specify either the SYMDEST keyword or the LU and TP
keyword combination to start tracing.

SYMDEST(sym_dest_name)
Specifies, through a symbolic destination name, the LU and TP combination
that APPC/MVS is to trace. When either of the following conditions are true,
APPC/MVS collects trace data for the conversation:

v The SYMDEST keyword value matches the value for the Sym_dest_name
parameter passed on the APPC/MVS Allocate, Register_for_Allocates, or
CPI-C Initialize_Conversation service.

v The specific LU and TP names in the side information entry (identified
through sym_dest_name) match the values for the Partner_LU and TP_name
parameters passed on the APPC/MVS Allocate or Register_for_Allocates
service, or the CPI-C Set_Partner_LU and Set_TP_Name services.

sym_dest_name is an 8-byte character field containing the symbolic name of
the destination LU and partner TP.

This keyword is mutually exclusive with the LU and TP keyword combination.
You must specify either the SYMDEST keyword or the LU and TP keyword
combination to start tracing.

USERID(*|user_id)
Specifies an additional filter to limit the conversations traced for a specific LU
and TP combination. You may use the abbreviations USER or U instead of
USERID. Use this keyword if you want to collect trace data for inbound and
outbound conversations established only by a particular user, for this LU/TP
combination.

user_id is a 10-byte character field containing the user ID to be used as a filter.
APPC/MVS traces the conversation only when the value for USERID matches
the value of the User_id parameter specified on the Allocate service. If the
conversations you want to trace might be allocated without any user ID, start
the trace using the SECNONE keyword instead of USERID.

The USERID and SECNONE keywords are both optional, and are mutually
exclusive. If you do not specify either USERID or SECNONE, APPC/MVS uses

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-29

the default value for USERID, ’*’, which means that all conversations
established for the LU/TP combination are traced, even conversations with a
Security_type of security_none.

SECNONE
Specifies that APPC/MVS is to trace only conversations allocated without a user
ID specified, for this LU and TP combination. When either of the following
conditions is true, APPC/MVS collects trace data for the conversation:

v A Security_type of security_none is specified on the Allocate service

v A Security_type of security_same or security_pgm is specified on the Allocate
service, but VTAM downgraded the conversation to security_none.

The USERID and SECNONE keywords are both optional, and are mutually
exclusive. If you do not specify either USERID or SECNONE, APPC/MVS uses
the default value for USERID, ’*’, which means that all conversations
established for the LU/TP combination are traced, even conversations with a
Security_type of security_none.

Stopping Trace Activity
Through the ATBTRACE REXX exec, you may stop all active API traces for a
particular data set. Depending on the way your installation chose to set up API
trace data sets and restrict their use, you might be stopping traces started by other
programmers when you issue a STOP request. Before issuing the STOP request,
consider requesting a list of active traces for this data set, and reviewing the results
to determine whether you might be adversely affecting the work of others. Keep in
mind that, after an error occurs, the longer you wait to stop tracing, the greater the
risk of losing pertinent trace data through wrapping.

Your installation might restrict the use of not only API trace data sets, but also
APPC/MVS LUs and TPs. To successfully issue a STOP request, you must either:

v Have issued the first ATBTRACE START request for this data set, or

v Have the appropriate access to the security profile for the ATBTRACE resource
for all the LUs and TPs for which APPC/MVS is storing trace data in this data
set.

Otherwise, APPC/MVS rejects the STOP request, issuing an ATB6xxxxI message
that states the security violation.

When it successfully processes a STOP request, APPC/MVS returns message
ATB60036I to the issuer of the request to indicate successful completion, and writes
ATB60052I in the specified data set. This message contains a user ID and time
stamp to indicate who stopped the traces for this data set, and at what time.

In some cases, APPC/MVS must delay the processing of a STOP request, usually
because of extensive I/O activity. If a delay is necessary, APPC/MVS issues
message ATB60024I to indicate that the STOP request is queued for processing. To
determine when the STOP request has completed, issue an ATBTRACE LIST
request for this data set; if the response to the LIST request is ATB60047, the
STOP request is still pending.

If errors occur during STOP processing, APPC/MVS issues various ATB6xxxxI
messages to inform the issuer of the STOP request.

Selecting the Invocation Method for the ATBTRACE STOP Request: To stop
API tracing activity, you may use any of the invocation methods described in
“Methods of Invoking the ATBTRACE REXX Exec” on page 6-22, regardless of the

Diagnosing Problems with APPC/MVS TPs

6-30 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

method you chose to start an API trace. Before issuing a STOP request, make sure
you are aware of the programming environment and restrictions described in
“Programming Considerations” on page 6-21.

In general, using the same method to both start and stop tracing is the easiest
approach, but unusual circumstances might require mixing methods. For example,
suppose a particular TP is not functioning correctly in your installation’s production
system. You might choose to issue the START and STOP requests in the TP profile
JCL, so you can collect trace data each time the TP runs. If you find that, because
multiple instances of the TP are running, tracing activity is impacting the
performance of APPC/MVS work, you could issue the STOP request through TSO/E
instead.

Coding an ATBTRACE STOP Request: Use the following syntax diagram and
parameter descriptions to code an ATBTRACE request to stop tracing a
conversation.

ÊÊ ATBTRACE STOP DATASET (ds_name) ÊÍ

Parameters

STOP
Specifies that all API tracing activity for the specified data set is to stop.

DATASET(ds_name)
Specifies the data set for which tracing activity is to stop. You may use the
abbreviations DA, DSNAME, DSN, or DS instead of DATASET.

ds_name can be either the fully qualified or unqualified name of a pre-allocated,
sequential data set. A fully qualified name must be specified within single
quotes. When the data set name is specified without quotes, APPC/MVS adds a
high-level qualifier, the user ID of the ATBTRACE invoker, to the data set name.

When ATBTRACE is invoked in MVS batch mode, you must specify a fully
qualified data set name; otherwise, APPC/MVS rejects the ATBTRACE request.

Listing Active API Traces
Through the ATBTRACE REXX exec, you may request a list of all active API traces
for a particular data set, or for all API trace data sets on the system. When it
successfully processes a LIST request, APPC/MVS returns message ATB60046I to
the issuer of the request; this message contains:

v A user ID and time stamp to indicate who issued the first START request for this
data set, and at what date and time.

v For each active trace, the parameter values that were specified on the START
request, and the date and time at which the START request was issued.

Because an unlimited number of traces may be active for each trace data set, you
might have difficulty finding the end of the list. Look for message ATB60042I, which
APPC/MVS returns when LIST processing is complete.

APPC/MVS does not return LIST information for a data set for which STOP
processing is in progress. Depending on the type of LIST request you specify (one
data set or all), APPC/MVS returns message ATB60047I when STOP processing is
in progress:

v If you specified one data set, you get only ATB60047I in response

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-31

v If you specified all, you get the same message for each data set for which STOP
processing is in progress, along with the list of active traces for the remaining
trace data sets on the system.

Selecting the Invocation Method for the ATBTRACE LIST Request: To list API
tracing activity, you may use any of the invocation methods that are valid for START
and STOP requests. The method you choose determines where APPC/MVS returns
the list results. Invocation methods and output destinations are described in
“Methods of Invoking the ATBTRACE REXX Exec” on page 6-22. Before issuing a
LIST request, make sure you are aware of the programming environment and
restrictions described in “Programming Considerations” on page 6-21.

Coding an ATBTRACE LIST Request: Use the following syntax diagram and
parameter descriptions to code an ATBTRACE request to list all active API traces
for a specified data set, or for all API trace data sets in use on this system.

ÊÊ ATBTRACE LIST
DATASET (ds_name)

ÊÍ

Parameter
Description

LIST
Requests a list of all active API traces for a specified data set, or for all API
trace data sets in use on this system.

DATASET(ds_name)
Specifies the API trace data set for which a list of active traces is requested.
You may use the abbreviations DA, DSNAME, DSN, or DS instead of
DATASET.

ds_name can be either the fully qualified or unqualified name of a pre-allocated,
sequential data set. A fully qualified name must be specified within single
quotes. When the data set name is specified without quotes, APPC/MVS adds a
high-level qualifier, the user ID of the ATBTRACE invoker, to the data set name.

When ATBTRACE is invoked in MVS batch mode, you must specify a fully
qualified data set name; otherwise, APPC/MVS rejects the ATBTRACE request.

Interpreting API Trace Data
The API trace facility writes trace data in the form of ATB6xxxxI messages;
illustrates the format and explains the contents of each message. These messages
are stored in a particular API trace data set, in a format that you can view with an
editor or browser, once all tracing activity for the data set has stopped.

For a particular LU and TP (and possibly USERID) combination, these ATB6xxxxI
messages (or trace entries) document:

v ATBTRACE START and STOP requests, including all parameters and their
values specified for each request.

v The contents of FMH-5 records exchanged between conversing TPs, excluding
passwords.

v Both entry to and return from a supported APPC/MVS or CPI-C service.

v The number of trace entries lost if APPC/MVS had to temporarily suspend tracing
activity.

Diagnosing Problems with APPC/MVS TPs

6-32 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Depending on the location of the TP’s partners, you might have to compare the
contents of more than one trace data set; perhaps comparing the API trace data
with trace data from a facility provided on a platform other than MVS. The format of
API trace data is similar to that provided by CM/2 on OS/2, so you can more easily
diagnose problems between APPC/MVS TPs and their partners on OS/2.

Reading Service-Entry and Service-Return Trace Entries
For synchronous calls, the API trace facility provides one trace entry for entry to a
particular service, and one for return from that service. For asynchronous calls, API
trace provides three trace entries: one for entry to the service, one when
asynchronous processing of the service begins, and the last when asynchronous
service processing completes.

For both entry and return trace entries, some of the supplied and returned
parameter values have been converted into text, so anyone using the trace data for
debugging can more easily determine the intent and result of the service call. For
example, on an Allocate call, suppose a TP specifies a value of 0 for the
Conversation_type parameter, which represents a basic, rather than a mapped,
conversation. In the service-entry trace entry, the value for Conversation_type
appears as the phrase “BASIC_CONVERSATION” rather than 0.

For both synchronous and asynchronous calls, the service-entry trace entry
includes a list of only those parameters for which the caller had to supply values.
The service-return trace entry includes a list of only those parameters for which
APPC/MVS returned values. The service-return entry might also contain error
information, if an error occurred during service processing.

To reduce the amount of data in the trace data set, the API trace facility includes
only the first few bytes and last few bytes of send or receive data.

The following example contains sample API trace data for a successful,
synchronous call to the Allocate service:
ATB60055I ENTRY TO THE ATBALC2 SERVICE:
TIMESTAMP: 07/20/1995 03:05:36.632718
ASID: 0045
TCB ADDR: 00550324
JOB NAME: JOEA
LU: NET1.LUA
TP: TPA
USERID: JOE
CONVID: 0000000000000000
PARAMETERS:
CONVERSATION_TYPE: BASIC_CONVERSATION
SYM_DEST_NAME:
PARTNER_LU_NAME: LUA
MODE_NAME: TRANPAR
TP_NAME_LENGTH: 3
TP_NAME: TPA
RETURN_CONTROL: WHEN_SESSION_ALLOCATED
SYNC_LEVEL: CONFIRM
SECURITY_TYPE: SEC_PGM
USER_ID: MYUSER
PASSWORD: **********
PROFILE: MYGROUP
USER_TOKEN: 0040
NOTIFY_TYPE: 0000000000000000
TP_ID: 0000000000000000
LOCAL_LU_NAME:

ATB60056I THE ATBALC2 SERVICE COMPLETED.
TIMESTAMP: 07/20/1995 03:05:45.816390

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-33

ASID: 0045
TCB ADDR: 00550324
JOB NAME: JOEA
LU: NET1.LUA
TP: TPA
USERID: JOE
CONVID: 0345056400000005
PARAMETERS:
CONVERSATION_ID: 0345056400000005
RETURN_CODE: OK

Note that this sample trace entry includes MVS-specific information such as
address space ID, TCB address, job name, and so on. This information can help
you sort trace data if you are concurrently tracing multiple TPs or users, and storing
all trace data in the same data set.

The following example contains sample API trace data for a successful,
asynchronous call to the Allocate service:
ATB60055I ENTRY TO THE ATBALC2 SERVICE:
TIMESTAMP: 07/20/1995 03:06:36.632718
ASID: 0045
TCB ADDR: 00553324
JOB NAME: FREDA
LU: NET1.LUA
TP: TPA
USERID: FRED
CONVID: 0000000000000000
PARAMETERS:
CONVERSATION_TYPE: BASIC_CONVERSATION
SYM_DEST_NAME: MYSYM
PARTNER_LU_NAME:
MODE_NAME:
TP_NAME_LENGTH: 0
TP_NAME:
RETURN_CONTROL: WHEN_SESSION_ALLOCATED
SYNC_LEVEL: CONFIRM
SECURITY_TYPE: SEC_PGM
USER_ID: MYUSER
PASSWORD: **********
PROFILE: MYGROUP
USER_TOKEN: 0040
NOTIFY_TYPE: 0000000107554344
TP_ID: 0000000000000000
LOCAL_LU_NAME:

ATB60057I SYNCHRONOUS RETURN FROM THE ATBALC2 SERVICE.
TIMESTAMP: 07/20/1995 03:06:45.872718
ASID: 0045
TCB ADDR: 00000000
JOB NAME: FREDA
LU: NET1.LUA
TP: TPA
USERID: FRED
CONVID: 0345056400000005
PARAMETERS:
RETURN_CODE: OK

ATB60056I THE ATBALC2 SERVICE COMPLETED.
TIMESTAMP: 07/20/1995 03:06:36.542735
ASID: 0045
TCB ADDR: 00000000
JOB NAME: FREDA
LU: NET1.LUA
TP: TPA
USERID: FRED

Diagnosing Problems with APPC/MVS TPs

6-34 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

CONVID: 0345056400000005
PARAMETERS:
CONVERSATION_ID: 0345056400000005
RETURN_CODE: OK

The following example contains sample API trace data for an unsuccessful call to
the Send service, which fails because of a security violation detected by the partner
LU:
ATB60055I ENTRY TO THE ATBSEND SERVICE:
TIMESTAMP: 07/20/1995 08:13:15.349258
ASID : 0045
TCB ADDR : 00553324
JOB NAME : FREDA
LU : NET1.LUA
TP : TPA
USERID : MYUSER
CONVID : 049303F800000001
PARAMETER:
CONVERSATION_ID : 049303F800000001
SEND_TYPE : SEND_AND_CONFIRM
SEND_LENGTH : 28
ACCESS_TOKEN : 00000000
BUFFER : 001CE3C8D9C5C540E3D6...40D4D94B40E2C3D6E3E3
NOTIFY_TYPE : 00000000

ATB60056I TRACE DATA ON RETURN FROM THE ATBSEND SERVICE:
TIMESTAMP: 07/20/1995 08:14:15.349258
ASID : 0045
TCB ADDR : 00553324
JOB NAME : FREDA
LU : NET1.LUA
TP : TPA
USERID : FRED
CONVID : 049303F800000001
PARAMETER:
RETURN_CODE: SECURITY_NOT_VALID

ERROR_INFO:
MESSAGE_TEXT_LENGTH : 77
MESSAGE_TEXT : ATB80100I From VTAM macro APPCCMD:
Primary error return code: 0004 secondary error return code: 0005
sense code: 080F6051
ERROR_LOG_PRODUCT_SET_ID_LENGTH: 14
ERROR_LOG_PRODUCT_SET_ID :MVSESA
ERROR_LOG_INFORMATION_LENGTH : 120
ERROR_LOG_INFORMATION : ATB70017I TP security violation.
Partner LU LUA rejected the allocate request because authorization
checks failed.

Note that this sample trace entry contains additional diagnostic information about
the security violation. This additional information is exactly what the Error_Extract
service returns when a TP calls that service immediately after the previous call
ended with an error.

If you know that your TP issues specific calls to services but trace entries for those
service calls are missing (but not because of wrapping or suspension), the TP might
be passing values that are not valid. APPC/MVS does not record a trace entry for a
service call when either:

v The TP supplied a conversation ID on the call, but the conversation ID is not
valid

v The TP supplied a conversation ID on the call, but the conversation was
deallocated before the TP issued the call.

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-35

Also remember that, on the call to establish a conversation, the TP has to supply
values for partner LU name, TP name, and possibly user ID that match those
specified on the ATBTRACE START request. If the TP does not supply matching
values, APPC/MVS does not generate any trace entries for the conversation.

Reading Trace Entries When Wrapping Occurred
Because you can issue more than one START request for the same data set, and
because APPC/MVS might wrap data, you might find multiple START trace entries,
but not necessarily a complete record of traces started for this data set. You might
need to determine:

v Which entries are the most recent,

v Which entries might have been overwritten, or

v Which traces might have been active previously, but ended before the STOP
request was issued.

To determine the completeness of the trace data, look for the STOP entry by
searching for the character string “STOP”. This entry indicates the end of the most
recent trace entries; any entries following the STOP entry are entries written before
wrapping occurred. Also, the STOP entry itself lists all traces for this data set that
were active when the STOP request was issued.

Finding All Trace Entries for a Specific Conversation
The API trace data set might contain trace entries for more than one conversation;
because entries are arranged by time stamp, entries for the conversations are
probably interleaved. Because most API trace entries contain the conversation ID,
which is unique for each conversation, you can sort the trace entries by
conversation ID to consolidate all the entries for a particular conversation. The only
trace entries that do not contain such IDs are those for:

v APPC/MVS allocate queue services, and

v Services that do not directly affect the conversation, such as the APPC/MVS
Get_TP_Properties service.

Determining the Level of TP Traced
Your installation can customize a TP’s processing for different audiences by defining
different TP profiles for the same TP, and assigning a different level in each TP
profile key. On an ATBTRACE START request, you cannot specify the level of TP to
be traced, so the API trace data set might contain a mix of trace entries from
various levels of the TP. You might be able to restrict tracing activity to specific
users through the USERID keyword on ATBTRACE; but, depending on how your
installation defines different audiences, that might not be enough to ensure that you
are collecting trace data for only one level of the TP. If you need to distinguish the
TP’s processing by determining the TP level, use the following information together
to match trace data with the correct TP level:

v The LU, TP, user ID, and FMH-5 information from the API trace entries, and

v The GROUPID and USERID values in the appropriate TP profiles.

Assessing the Impact of Trace Entries Lost during Suspension
Depending on the volume of trace entries generated through TP processing, and
possible contention for system resources, APPC/MVS might have to temporarily
stop collecting trace data, so it can write the backlog of trace entries to the trace
data set. When it resumes collecting trace data, APPC/MVS writes a trace entry
that indicates how many potential trace entries were lost during the suspension.

This loss might or might not affect your ability to diagnose a problem, or to verify TP
design or conversation flow. If your TP’s design is relatively simple, and you can
easily extract the existing trace entries for this TP from other entries in the data set,

Diagnosing Problems with APPC/MVS TPs

6-36 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

you might be able to use the existing entries to accomplish your task. Based on
your knowledge of the TP’s processing, and the type of information the API trace
facility collects, you might be able to determine exactly what entries are missing,
and determine their relative importance to the task at hand.

Otherwise, you might have to restart the trace for this TP to collect complete
information about its processing. If you decide to restart the trace, consider the
following actions that might help avoid another suspension:

v Restrict the trace as much as possible by altering the values you supply for the
LU or USERID keywords on the ATBTRACE START request. For example, if you
originally specified a generic resource name for the LU, you might have collected
trace data for multiple instances of the TP, running on different LUs in the generic
resource group. If you know the specific name of an LU in that group, you could
specify that name instead of the generic resource name. Restricting the trace this
way might reduce the volume of trace entries that APPC/MVS has to collect, and
reduce the possibility of another suspension.

v Use a different data set for the trace entries by specifying a different data set
name on the START request. Doing so might reduce or eliminate resource
contention, and reduce the possibility of another suspension.

The lost entries might include a START entry for an ATBTRACE START request
that was issued while tracing was suspended. By checking the LU/TP (and possibly
user ID) combinations in trace entries with those on existing START entries, you
can determine whether additional traces were started for this data set. STOP entries
do appear in the trace data set, even if the STOP request was issued while tracing
was suspended. In that case, APPC/MVS queues STOP requests to process once it
has resumed tracing activity.

Assessing the Impact of Trace Entries Lost because of
Termination
In addition to stopping API tracing activity in response to an ATBTRACE STOP
request, APPC/MVS might have to stop active traces when it:

v Encounters a severe internal or I/O error while processing a START or STOP
request

v Encounters an internal or I/O error while recording a trace entry

v Terminates normally or abnormally.

In these cases, APPC/MVS stops all active traces for the data set (or, for more
global errors, all traces for all data sets), and rejects any subsequent ATBTRACE
requests for the affected data set (or system). APPC/MVS also does not write any
backlog of entries, so all outstanding data is lost. In fact, for I/O errors, the trace
entries in the data set might be unusable.

Whenever possible, APPC/MVS writes a trace entry to indicate that it has stopped
trace activity, and also notifies the operator by issuing a message to the console.
Depending on the error that occurred, you might not find such an entry in the data
set you’re using, and the usual STOP entry won’t appear either. To determine the
end of the most recent trace entries, scan through the time stamps on the entry. If
wrapping occurred, older trace entries appear after recent entries; otherwise, the
most recent entries are at the end of the data set.

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-37

Overview of Error_Extract Service
Error_Extract is a TP conversation service that returns detailed information about
errors indicated by return codes. Your TP can display the detailed error information
to end users, or use it as input to a debugging program.

All error return codes from APPC/MVS indicate that one of the following error
situations occurred in APPC processing:

v A TP called an APPC/MVS service with unknown values or incorrect parameters

v A TP called a service while a conversation is in a state that does not support the
service

v APPC/MVS found an error that prevented the scheduling of a TP, such as:

– An LU was either not defined or incorrectly defined

– The address space in which a requestor TP is running did not have access to
a scheduler

– An internal error occurred.

IBM recommends that your TP call Error_Extract immediately after APPC/MVS
returns a return code that indicates one of the errors listed above. Also, call
Error_Extract only when errors occur in calls to supported services, which are listed
in Table 6-2 on page 6-6.

The following sections explain how to call Error_Extract and interpret the
information that Error_Extract returns.

Types of Error Information that Error_Extract Returns
Table 6-3 shows the types of information that the Error_Extract service can return,
the situations in which each type of information is returned, and a reference to the
section in this book that describes that information:

Table 6-3. Types of Information that Error_Extract Returns

Type Error Situation Reference

Error reason
codes

APPC/MVS finds an error in the
local TP or system

“Summary of Error_Extract Reason
Codes” on page 11-1

Error messages APPC/MVS finds an error in the
local TP or system

“Error_Extract (ATB8) Messages”
on page 11-24

Product set
identifiers (IDs)

A remote system or TP finds an
error in a conversation that
involves a TP running on MVS

“Product Set Identifiers” on page
6-39

Error log
information

A remote system or TP finds an
error in a conversation that
involves a TP running on MVS

“Error_Extract Error Log
Information (ASB, ATB7)
Messages” on page 11-4

An error reason code that is returned on a call to Error_Extract has the same
meaning as the error message that is returned on the same call. “Summary of
Error_Extract Reason Codes” on page 11-1 maps the reason codes that
Error_Extract returns with their associated messages. The following sections
provide detailed explanations of the remaining two types of information that
Error_Extract can return.

Diagnosing Problems with APPC/MVS TPs

6-38 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Error Log Information
A partner system might provide error log information to APPC/MVS to describe an
error that occurs on that system. APPC/MVS can also send error log information to
a partner system if it detects an error in a conversation that involves a TP running
on MVS.

When APPC receives error log information, your TP can call Error_Extract to return
that information in a convenient, readable format. When a partner TP or system is
not APPC/MVS, error log information is available to Error_Extract only when the
partner TP or system:

v Calls the CPI Communications Set_Log_Data call to specify the type of
information that is to be logged

v Calls the Send_Error service to inform your TP that the partner system detected
an error during a conversation

v Calls the Deallocate service with a deallocate_type of
CM_DEALLOCATE_ABEND (to end the conversation abnormally)

Error_Extract can return only the first 512 bytes of error log information that is
available.

The APPC/MVS scheduler or an alternate scheduler can also send error log
information to a partner system or program. The information can describe errors
that APPC/MVS finds when it tries to schedule a TP, which might help diagnose
errors in the TP running on the partner system.

Product Set Identifiers
When a partner system or TP sends error log information to APPC/MVS, a product
set ID, which identifies the hardware or software product set that is currently
configured on the partner system, might be included. You can use the product set
ID to identify the hardware or software product that found the specified error.

Error_Extract returns up to 256 bytes of the product set ID and the length of the ID
to the caller. A length of zero indicates that the partner system or TP did not send a
product set ID.

For information about the format of a product set ID, see the descriptions of the
Product Set ID (X'10') and the Product Identifier (X'11') MS Common Subvectors in
SNA Formats

Rules for Calling Error_Extract
Your TP can call Error_Extract only:

v For LU 6.2 TP conversation services and CPI Communications TP conversation
calls (for a list of supported services, see “Overview of Error_Extract Service” on
page 6-38)

v For the most recently completed call to a conversation service (Error_Extract
cannot return information for previous calls)

v For a conversation that was accepted or allocated by a TP that shares the same
home address space as the caller.

When an error return code is returned to an APPC callable service, APPC/MVS
retains the information that Error_Extract returns until one of the following occurs:

v Your TP calls the Error_Extract service

v The conversation is deallocated normally (the TP receives deallocated_normal
return code)

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-39

v Your TP calls another APPC/MVS TP conversation service for the same
conversation

v The APPC address space is cancelled or restarted.

You should design your TP so APPC/MVS retains the information that Error_Extract
returns for as long as it is required.

Recommendation: Do not call another APPC/MVS service after receiving an error
return code without first calling Error_Extract.

Calling Error_Extract for an Unestablished Conversation
If APPC/MVS cannot establish a conversation, APPC/MVS still assigns a
conversation ID to the request to allocate the conversation. Your TP can use that
conversation ID as input to Error_Extract when errors occur in calls to the following
services:
v LU 6.2 Allocate
v LU 6.2 Get_Conversation
v CPI-C Initialize_Conversation
v CPI-C Accept_Conversation.

For example, say that two programs call the LU 6.2 Allocate service from the same
address space and both calls to Allocate receive error return codes. APPC/MVS
assigns a different conversation ID to each call. Your TP can specify either of those
conversation IDs on calls to Error_Extract, even though the conversations were
never actually allocated.

If APPC/MVS is not active, your TP will not be able to establish a conversation. In
this case, your TP receives decimal return code 20 (product-specific error) from the
Allocate call. To verify that APPC/MVS is not active, call Error_Extract, which
returns decimal return code 64 when APPC/MVS is not active. (To debug other
product-specific errors, refer to “Diagnosing Product-Specific Errors” on page 6-46.)

Using Error_Extract for Synchronous and Asynchronous Calls
When designing your TP, you can choose to call some conversation services
synchronously or asynchronously, depending on whether or not you want to
process other instructions while the system processes a call. Your TP can call
Error_Extract to return error information for both synchronous and asynchronous
calls.

Calling Error_Extract for Synchronous Requests
When you select synchronous processing, the system must complete processing for
the call before it moves on to process other instructions. To return error information
for a synchronous call, your TP should call Error_Extract immediately after
processing for the synchronous call is complete (which is indicated by the return
code).

The following section shows an example of how to call Error_Extract for an
synchronous request.

Example Call to Error_Extract (Synchronous)
Figure 6-8 shows how to call Error_Extract to return error information for a
synchronous call to a conversation service:

Diagnosing Problems with APPC/MVS TPs

6-40 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

/***/
/* Call the APPC/MVS LU6.2 Send_Data service. Specify a */
/* Notify_type of None to request synchronous processing. */
/***/

CALL ATBSEND(Conversation_id,
Send_type,
Send_length,
Access_token,
Buffer,
Request_to_send_received,
Notify_type, /* Value of "None" */
Return_code);

/***/
/* Check the return code that APPC/MVS returns to the caller. */
/* If an error occurred on the call (indicated by an error return */
/* code from APPC/MVS), call the Error_Extract service to */
/* obtain a service reason code and error message; write the */
/* error message to the output stream. */
/***/

IF Return_code |= atb_ok THEN
BEGIN
CALL ATBEES3(Conversation_id,

Service_Name,
Service_Reason_Code,
Message_Text_Length,
Message_Text,
Error_Log_Product_Set_ID_Length,
Error_Log_Product_Set_ID,
Error_Log_Information_Length,
Error_Log_Information,
Reason_Code,
Return_Code);

Figure 6-8. Example Use of Error_Extract Service, Synchronous (figure continued)

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-41

Calling Error_Extract for Asynchronous Requests
To return error information for an asynchronous call to a conversation service, your
TP should call Error_Extract immediately after:

v The TP receives an error return code from APPC/MVS, or

IF (Return_Code = 0) THEN
BEGIN
/***/
/* If the call to Error_Extract is successful, */
/* write the message text returned by Error_Extract */
/* to the output stream. In this example, only */
/* messages with a length of 126 characters or less */
/* are displayed (126 is the maximum message length */
/* that DISPLAY can handle.) You might want to */
/* display more of the message text with multiple */
/* DISPLAY statements. */
/***/
IF Message_Text_Length <= 126 THEN
DISPLAY (Message_Text) ;

/***/
/* If the partner TP provided a product set ID, */
/* write it to the output stream. In this example, */
/* we display only the software product name from */
/* the subvector that contains the product set ID. */
/* Your TP can extract parts of the product */
/* set ID as desired. See 'Sending a Product Set ID */
/* to a Partner System' in this section for infor- */
/* mation about how to extract parts of the ID. */
/***/
IF Error_Log_Product_Set_ID_Length > 0 THEN
CALL Extract_Software_Product_Name (Error_Log_Product_set_ID,

Product_name_length,
Product_name) ;

/***/
/* Write the software product name to the output */
/* stream. This example program displays only */
/* product names with a length of 126 characters or */
/* less. Your TP can use multiple DISPLAY */
/* statements to display product names with more */
/* than 126 characters. */
/***/
IF Product_name_length <= 126 THEN
DISPLAY (Product_name) ;

/***/
/* If the partner TP or system provided error log */
/* data, write it to the output stream. This example */
/* displays only product names with 126 characters */
/* or less. Your TP can use multiple */
/* DISPLAY statements to display product names with */
/* more than 126 characters. */
/***/
IF Error_Log_Information_Length > 0 THEN

IF Error_Log_Information_Length <= 126 THEN
DISPLAY (Error_Log_Information) ;

END;
ELSE
DISPLAY ('APPC/MVS Error Extract Service failed') ;

END;

Figure 6-9. Example Use of Error_Extract Service, Synchronous

Diagnosing Problems with APPC/MVS TPs

6-42 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v The system posts the event control block (ECB) that indicates the completion of
the service.

Your TP should not call any other APPC/MVS services for the same conversation
until the ECB is posted (indicating completion of the asynchronous service).

The following section shows an example of how to call Error_Extract for an
asynchronous request. See “Using Asynchronous Services” on page 4-10 for
detailed information about asynchronous processing for conversation callable
services.

Example Call to Error_Extract (Asynchronous)
Figure 6-10 on page 6-44 shows how to call Error_Extract to return error information
for an asynchronous call to a conversation service:

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-43

/***/
/* Call the APPC/MVS LU6.2 Allocate service. Specify a */
/* Notify_type of ECB to request asynchronous processing. */
/***/

CALL ATBALLC(Conversation_type,
Sym_dest_name,
Partner_lu_name,
Mode_name,
TP_name_length,
TP_name,
Return_control,
Sync_level,
Security_Type,
User_ID,
Password,
Profile,
User_token,
Conversation_ID,
Notify_type, /* Specifies a value of ECB */
TP_ID,
Return_code);

/***/
/* Check the return code that APPC/MVS returns to the caller. */
/* */
/* * If an error occurred on the call (indicated by an error */
/* return code from APPC/MVS), call the */
/* Error_Extract service to obtain a reason code and error */
/* message, and write the error message to the output stream. */
/* */
/* * If no errors occurred on the call (indicated by an error */
/* return code from APPC/MVS, call a procedure that contains */
/* assembler code to wait on the ECB. If an error occurs */
/* while processing the service, call Error_Extract. */
/***/

IF Return_code |= atb_ok THEN
BEGIN
CALL Report_error (Conversation_ID) ;

END;
ELSE
BEGIN
CALL Wait_processing (Notify_ECB);
IF Notify_ECB.completion_code > 0 THEN

CALL Report_error (Conversation_ID) ;
END;

RETURN;

Figure 6-10. Example Use of Error_Extract Service, Asynchronous (figure continued)

Diagnosing Problems with APPC/MVS TPs

6-44 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

/***/
/* Call procedure Report_Error to report an error in the call */
/* to the Allocate service. If the call to Report_Error is */
/* successful, it writes the following to the output stream: */
/* * The name of the callable service in error */
/* * The error message from Error_Extract */
/* * Error log data, if it is available */
/***/

Report_Error: Procedure (Conv_id);
BEGIN;
CALL ATBEES3(Conversation_id,

Service_Name,
Service_Reason_Code,
Message_Text_Length,
Message_Text,
Error_Log_Product_Set_ID_Length,
Error_Log_Product_Set_ID,
Error_Log_Information_Length,
Error_Log_Information,
Reason_Code,
Return_Code);

IF Return_code = 0 THEN
BEGIN
DISPLAY (Service_Name) ;
/***/
/* If the call to Error_Extract is successful, */
/* write the message text returned by Error_Extract */
/* to the output stream. In this example, only */
/* messages with a length of 126 characters or less */
/* are displayed (126 is the maximum message length */
/* that DISPLAY can handle.) You might want to */
/* display more of the message text with multiple */
/* DISPLAY statements. */
/***/
IF Message_Text_Length <= 126 THEN
DISPLAY (Message_Text) ;

/***/
/* If the partner TP provided a product set ID, */
/* write it to the output stream. In this example, */
/* we display only the software product name from */
/* the subvector that contains the product set ID. */
/* Your TP can extract parts of the product */
/* set ID as desired. */
/***/
IF Error_Log_product_set_ID_length > 0 THEN
CALL Extract_Software_Product_Name (Error_log_product_set_ID,

Product_name_length,
Product_name);

/***/
/* Write the software product name to the output */
/* stream. This example program displays up */
/* to 126 characters in the name (it is the maximum */
/* length that DISPLAY can handle). */
/* Your TP might want to display more */
/* characters with multiple DISPLAY statements. */
/***/
IF Product_name_length <= 126 THEN
DISPLAY (Product_name) ;

/***/
/* If the partner TP or system provided error log */
/* data, write it to the output stream. This example */
/* displays up to 126 characters of log data (it is */
/* the maximum length that DISPLAY can handle). */
/* Your TP might want to display more */
/* characters with multiple DISPLAY statements. */
/***/
IF Error_Log_Information_Length > 0 THEN
IF Error_Log_Information_Length <= 126 THEN
DISPLAY (Error_Log_Information) ;

END;
ELSE
DISPLAY ('APPC/MVS Error Extract Service failed') ;

END; /* End of Report_Error procedure */

Figure 6-11. Example Use of Error_Extract Service, Asynchronous

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-45

Diagnosing Product-Specific Errors
If your TP receives a decimal return code 20 from a call, either:

v APPC/MVS is not active, or

v A product-specific error occurred.

This return code often has an accompanying symptom record in the logrec data set.
If APPC/MVS is not active, however, a symptom record is not produced. In this
case, your TP can call the Error_Extract service, which returns decimal code 64
when APPC/MVS is not active. No further diagnostic information is available when
APPC/MVS is not active.

When a symptom record is recorded in the logrec data set, section 3 of the record
contains the primary symptom string for the product-specific errors:

Symptom Description
------- -----------
PIDS/5752SCACB Product identifier
RIDS/ATBxxxxx CSECT name
RIDS/ATBxxxxx#L Load module name
LVLS/ddd Product level
PCSS/ATBxxxx or CMxxxx Statement that caused the error
PRCS/dddddddd Return code returned to the caller
FLDS/REASON VALU/Hdddddddd Unique reason code identifying the

product-specific error

Section 5 of the symptom record contains the following information for the
product-specific error:

v The job or user name (in EBCDIC) for the home address space of the caller

v An EBCDIC description of the error (up to 80 characters)

Symptom FLDS/REASON VALU/Hdddddddd in section 3 of the symptom record
contains one of the reason codes described in Table 6-4:

Table 6-4. Reason Codes for Product-Specific Errors

Reason Code Message Text Explanation

00000001 APPC SERVICE REQUESTED WHILE SYSTEM
LOCK HELD.

A user requested an APPC/MVS service while a
system lock was held.

00000002 UNRECOGNIZED REQUEST. The system request from the caller is not one of
the APPC CPI-C or APPC LU 6.2 calls. The
program might be using an incorrect level of the
stub routine.

Diagnosing Problems with APPC/MVS TPs

6-46 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 6-4. Reason Codes for Product-Specific Errors (continued)

Reason Code Message Text Explanation

All other reason
code values

Matches associated ATB8xxxxI message text. All product-specific error reason codes, except
X'00000001' and X'00000002', are associated
with a specific ATB8xxxxI message. You can use
either the API trace facility or the Error_Extract
service to obtain the message text, or:

1. Convert the product-specific error reason
code to decimal

2. Use the decimal reason code value to find
the associated ATB8xxxxI message through
the table in “Summary of Error_Extract
Reason Codes” on page 11-1.

3. Refer to the appropriate ATB8xxxxI message
description in “Error_Extract (ATB8)
Messages” on page 11-24 for an explanation,
system action, and suggested response for
the error.

Diagnosing Problems with APPC/MVS TPs

Chapter 6. Diagnosing Problems with APPC/MVS TPs 6-47

Diagnosing Problems with APPC/MVS TPs

6-48 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Part 3. Reference

© Copyright IBM Corp. 1991, 2001

z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Chapter 7. Invocation Details for APPC/MVS Callable Services

The APPC/MVS interfaces are written as callable services. They are grouped
according to the class of programs that are likely to use the interfaces.

TP Conversation Services
Provide access to all APPC conversation functions. This set of services, used
by transaction programs, has equivalent VTAM LU 6.2 verbs and CPI
Communication calls.

Advanced TP Services
Provide access to more advanced transaction program interfaces, such as
those used by TPs with a schedule type of Multi-trans.

Allocate Queue Services
Provide access to LU 6.2 server functions, which allow you to direct inbound
allocate requests to server address spaces. These services have no equivalent
SNA LU 6.2 services or CPI Communications routines. The APPC/MVS allocate
queue services are documented in z/OS MVS Programming: Writing Servers for
APPC/MVS.

System Services
Provide access to system services not normally used by transaction programs,
but used by other MVS components, management subsystems, and transaction
schedulers. The APPC/MVS System services are documented in z/OS MVS
System Messages, Vol 3 (ASB-BPX).

APPC/MVS Program Environment
Any MVS program that invokes APPC/MVS services, or is attached by an
APPC/MVS LU in response to an inbound request, must be running in the following
environment when it invokes APPC/MVS services:

Authorization: Supervisor state or problem state, any PSW key

Dispatchable unit mode: Task or SRB mode

Cross memory mode: Any PASN, any HASN, any SASN

AMODE: 31-bit

ASC mode: Primary or access register (AR)

Interrupt Status: Enabled for I/O and external interrupts

Locks: No locks held

Control parameters: All parameters must be addressable by the caller
and in the primary address space, except for the
buffer parameter of ATBSEND, ATBRCVI,
ATBRCVW, and ATBEXAI, which may reside in
another address space or a data space.

Certain processing options of the APPC/MVS services require the callers to be in
supervisor state or in PSW key 0-7. Those requirements are included with the
reference information for each service.

High-Level Language Compilers
Table 7-1 on page 7-2 shows a partial list of high-level language compilers that
support APPC/MVS calls on MVS/ESA. Calls can be made with other compiler

© Copyright IBM Corp. 1991, 2001 7-1

levels and other compiler products that meet the preceding requirements and
linkage conventions. Note that the requirement for 31-bit addressing may limit some
language functions that you can use.

Table 7-1. Some High-Level Language Compilers for APPC/MVS Calls

Language Compiler

C C/C++ for OS/390

COBOL COBOL for OS/390 & VM Version 2

FORTRAN VS FORTRAN Compiler Version 2, Release 6 0

PL/I PL/I for MVS & VM Version 1, Release 1

RPG RPG/370 Version 1, Release 1.0

Syntax and Linkage Conventions for the Callable Services
All APPC/MVS callable services have a general calling syntax as follows:
CALL routine_name (parameters,return_code)

Some specific calling formats for languages that can invoke the APPC/MVS callable
services are:

COBOL
CALL “routine_name” USING parm1,parm2,...return_code

FORTRAN
CALL routine_name (parm1,parm2,...return_code)

C
routine_name (parm1,parm2,...return_code)

PL/I
CALL routine_name (parm1,parm2,...return_code)

REXX ADDRESS LU62 “routine_name parm1 parm2...return_code”

or

ADDRESS LINKPGM “routine_name parm1 parm2...return_code”

For REXX, enclose the routine name and all parameters within one pair of
single or double quotes. Parameters must be initialized to appropriate
values. The host command environment resolves the parameter values. For
more information, see z/OS TSO/E REXX Reference.

Assembler Call macro
CALL routine_name,(parm1,parm2,...return_code),VL

Callers must also use the following linkage conventions for all APPC/MVS services:

v Register 1 must contain the address of a parameter list, which is a list of
consecutive words, each containing the address of a parameter to be passed.
The last word in this list must have a 1 in the high-order (sign) bit.

v Register 13 must contain the address of an 18-word save area.

v Register 14 must contain the return address.

v Register 15 must contain the entry point address of the service being called.

v If the caller is running in AR ASC mode, access registers 1, 13, 14, and 15 must
all be set to zero.

7-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

On return from the service, general and access registers 2 through 14 are restored
(registers 0, 1 and 15 are not restored).

Any high-level language that generates this type of interface may be used to invoke
APPC/MVS callable services.

Parameter Description for Callable Services
All the parameters of the APPC/MVS callable services are required positional
parameters. When you invoke a service, you must specify all the parameters in the
order listed. APPC/MVS checks all parameters for valid values, regardless of
whether the parameters are used in call processing. Even though a language may
allow parameters to be omitted, APPC/MVS services do not.

Some parameters do not require values and allow you to substitute zeros or a
string of blanks for the parameter. For example, if you do not specify a symbolic
destination on the Allocate call, you must set the Sym_dest_name parameter to
eight blanks. The descriptions of the parameters identify those which can be
replaced by blanks or zeros, and when to do so.

In the descriptions of services in this document, each parameter is described as
supplied or returned.

Supplied means that you supply a value for the parameter in the call.

Returned means that the service returns a value in the named parameter when the
call is finished (for example, return_code).

Each parameter is also described in terms of its data type, character set, and
length.

Data type is either integer, character string, or structure.

Character set applies only to parameters whose values are character strings and
governs the values allowed for that parameter. Possible character sets are:

v No restriction

There is no restriction on the byte values contained in the character string.

v Type A EBCDIC

The string may contain only uppercase alphabetics, numerics, and national
characters (@, $, #), and must begin with an alphabetic or national character.
Use of @, $, and # is discouraged because those characters display differently
on different national code pages.

v 01134

The string may contain uppercase alphabetics or numerics, with no restriction on
the first character.

v 00640

The string may contain upper- or lowercase alphabetics, numerics, or any of 19
special characters with no restriction on the first character. This set is consistent
with the 00640 character set except that APPC/MVS does not allow blanks in
00640 character strings.

For more detailed information about the characters in each character set, see
“Appendix A. Character Sets” on page A-1.

Chapter 7. Invocation Details for APPC/MVS Callable Services 7-3

Length depends on the data type of the parameter.

v For an integer item, the length indicates the size of the field in bits or bytes.

v For a character string parameter, the length value indicates the number of
characters that may be contained in a character type parameter. The length may
specify a single number or a minimum and maximum number.

v For a structure parameter, the length value indicates the size of the structure in
bytes, or a minimum and maximum size if the size of the structure is variable.

Required Modules
The two methods described here can be used to access the APPC/MVS system
services.

v One or more of the following modules from SYS1.CSSLIB must be link-edited
with any program that issues APPC/MVS services:

ATBPBI With programs that issue CPI Communications calls or TP
conversation services

ATBATP With programs that issue APPC/MVS advanced TP services

ATBCTS With programs that issue APPC/MVS allocate queue services, or
the Reject_Conversation or
Set_Conversation_Accounting_Information services.

ATBCSS With programs that issue APPC/MVS system services.

If the load modules are to be executed on a level of APPC/MVS other than the
one on which the link-edit is performed, the link-edit should be run using copies
of the SYS1.CSSLIB modules from the system on which the load modules will be
executed.

After new releases of MVS are installed or maintenance is applied which affects
this interface, these modules and any load modules containing copies of them
must be link-edited with the APPC/MVS programs again. Therefore, with any
APPC/MVS applications that you write, provide a post-install job to link-edit the
modules again with the appropriate programs.

v A program can issue the MVS LOAD macro for the APPC/MVS service to obtain
its entry point address, then use that address to call the APPC/MVS service.

Additional language-specific statements may be necessary so that language
compilers can provide the proper assembler interface. Other programming notation,
such as variable declarations, are also language-dependent.

Versions of Callable Services
New APPC/MVS callable services have a version number as the last character of
the call name (for example, ATBIDN1). That number corresponds to the version of
APPC/MVS in which the call was introduced.

To determine which calls are valid on a system, you can obtain the current
APPC/MVS version number from the APPC/MVS Version service described in
“Version_Service” on page 9-31. On any system, valid APPC/MVS callable services
include the following:

v Calls with no version number

v Calls with a version number less than or equal to the current APPC/MVS version
number obtained from the Version service.

7-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

You may only call services that were introduced with the version number obtained
from the version service. For example, calls to ATBCMCTU and ATBCUC1 are both
valid when the current APPC/MVS version number is 1 or higher, but calls to
ATBxxx2 would be valid only when the current APPC/MVS version number is 2 or
higher.

Interface Definition Files (IDFs) for LU6.2 and APPC/MVS Services
APPC/MVS provides IDFs (also called pseudonym files or headers) which define
variables and values for parameters of APPC/MVS services. IDFs are available for
different languages, and can be included or copied from a central library into
programs that invoke APPC/MVS callable services. The following IDFs are available
on MVS:

For a list of IDFs for CPI-C calls, see “Interface Definition Files (IDFs) for CPI-C
Calls” on page 3-3.

APPC/MVS provides the following IDFs for APPC/MVS conversation calls:

Table 7-2. IDFs for APPC/MVS Conversation Calls

Language In member:

Assembler ATBASASM in SYS1.MACLIB

Assembler ATBSERV in SYS1.MACLIB

C ATBPBC in SYS1.SIEAHDR.H

Note: ATBPBC is also shipped in the z/OS UNIX System Services HFS directory
/usr/include.

COBOL ATBPBCOB in SYS1.SIEAHDR.H

FORTRAN ATBPBFOR in SYS1.SIEAHDR.H

PL/I ATBPBPLI in SYS1.SIEAHDR.H

REXX ATBPBREX in SYS1.SIEAHDR.H

For APPC/MVS allocate queue services, and for the Reject_Conversation and
Set_Conversation_Accounting_Information services:

Table 7-3. IDFs for APPC/MVS Allocate Queue Services

Language In member:

Assembler ATBCTASM in SYS1.MACLIB

C ATBCTC in SYS1.SIEAHDR.H

Note: ATBCTC is also shipped in the z/OS UNIX System Services HFS directory
/usr/include.

COBOL ATBCTCOB in SYS1.SIEAHDR.H

FORTRAN ATBCTFOR in SYS1.SIEAHDR.H

PL/I ATBCTPLI in SYS1.SIEAHDR.H

REXX ATBCTREX in SYS1.SIEAHDR.H

Chapter 7. Invocation Details for APPC/MVS Callable Services 7-5

7-6 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Chapter 8. APPC/MVS TP Conversation Callable Services

The APPC/MVS TP conversation callable services are based upon existing SNA LU
6.2 verbs and CPI Communications calls. These services are intended for use in
conversations by transaction programs and APPC/MVS servers.

Programs that use APPC/MVS TP conversation services must use one of the two
methods described “Required Modules” on page 7-4 to access the APPC/MVS
system services.

The following table lists the TP conversation callable services that have more than
one associated call name. This chapter describes the current versions of the calls,
which are the preferred programming interfaces for these services. The previous
versions are described in “Appendix E. Previous Versions of APPC/MVS Callable
Services” on page E-1.

Table 8-1. TP Conversation Callable Services with Multiple Call Names

Service Name Previous Call Name Current Call Name Reference for
Current Call

Allocate ATBALLC and
ATBAL2

ATBALC5 8-1

Get_TP_Properties ATBGETP ATBGTP4 “Get_TP_Properties”
on page 8-52

Allocate
Equivalent to:
v LU 6.2 (MC_)Allocate
v CPI Initialize_Conv (CMINIT) and Allocate (CMALLC)

Allocates a session between the local LU and a partner LU, and on that session
allocates a basic or mapped conversation between the local program and a partner
program. A conversation ID is assigned to the conversation. Call this service before
other calls that refer to the conversation.

If the program that issues the allocate call was not started by APPC/MVS in
response to an inbound allocate call, and is not associated with an alternative
transaction scheduler, the outbound allocate call and ensuing conversation flow
through the base LU for the APPC/MVS transaction scheduler. If, in such a case,
there is no base LU defined for the APPC/MVS transaction scheduler, APPC/MVS
uses the system base LU. If there is no system base LU, APPC/MVS rejects the
allocate request. For more information about base LUs and their definition, see
z/OS MVS Planning: APPC/MVS Management.

© Copyright IBM Corp. 1991, 2001 8-1

Requirements

Authorization: Supervisor state or problem state, any PSW key, with the
following exceptions:

v When the TP_name specified is an SNA TP name
beginning with X'06', the caller must run either in
supervisor state, or with PSW key 0-7.

v When the TP_id specified is a value other than binary
zeros, the caller must run either in supervisor state, or
with PSW key 0-7.

Dispatchable unit mode: Task or SRB mode, with the following exception: task mode
only for callers that issue Allocate for a conversation with a
synchronization level of Syncpt.

Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
Conversation_type

Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Conversation_type specifies the type of conversation on which the service is
invoked.

CALL ATBALC5(
Conversation_type,
Sym_dest_name,
Partner_LU_name,
Mode_name,
TP_name_length,
TP_name,
Return_control,
Sync_level,
Security_type,
User_ID,
Password,
Profile,
User_Token,
Conversation_ID,
Notify_type,
TP_ID,
Local_LU_name,
Timeout_value,
Return_code

);

Figure 8-1. ATBALC5 - LU 6.2 Allocate

Allocate

8-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Valid values for this parameter are:

Value Meaning

0 Basic_conversation

Specifies that in this conversation, the TPs will format their data into
separate records, with record length and data specified, before sending
it.

1 Mapped_conversation

Specifies that in this conversation, the TPs will rely on APPC to format
the data that the TPs send.

Sym_dest_name
Supplied parameter
v Type: Character string
v Char Set: 01134
v Length: 8 bytes

Specifies a symbolic name representing the partner LU, the partner TP_name,
and the mode name for the session on which the conversation is to be carried.
The symbolic destination name must match that of an entry in the side
information data set. The appropriate entry in the side information is retrieved
and used to initialize the characteristics for the conversation.

If you specify a symbolic destination name, the partner LU name, mode name,
and TP name are obtained from the side information. If you also specify values
for the Partner_LU_name, Mode_name, or TP_name parameters on the
Allocate service, these values override any obtained from the side information.

The symbolic destination name in this field can be from 1 to 8 characters long,
with characters from character set 01134. If the symbolic destination name is
shorter than eight characters, it must be left-justified in the variable field, and
padded on the right with blanks. To not specify a symbolic destination name, set
the sym_dest_name parameter value to 8 blanks and provide values for the
Partner_LU_name, Mode_name, and TP_name parameters.

Partner_LU_name
Supplied parameter
v Type: Character string
v Char Set: Type A
v Length: 17 bytes (must be padded with blanks if less than 17 bytes)

Partner_LU_name specifies the name of the LU at which the partner program is
located.

The Partner_LU_name is any name by which the local LU knows the partner
LU for the purposes of allocating a conversation. The local LU transforms this
locally known LU name to an LU name used by the network.

The Partner_LU_name can be one of the following:

v LU name only (1-8 byte Type A character string).

This string represents the network LU name, which, if unique within the
network and interconnected networks, is sufficient for most TP
communications.

IBM recommends, however, that you specify either a symbolic destination
name (in the Sym_dest_name parameter), or the network-qualified LU name,

Allocate

Chapter 8. APPC/MVS TP Conversation Callable Services 8-3

if known. While the network LU name might be unique currently, it might not
remain so if the installation increases the number of networks in use.
Specifying a symbolic destination name or network-qualified LU name can
minimize the need for future network definitions and program changes.

v A VTAM generic resource name.

If the partner LU is a member of a generic resource group, you may specify
the 1- to 8-byte generic resource name of the group.

v Combined network_ID and network LU name (two 1-8 byte Type A character
strings, concatenated by a period: network_ID.network_LU_name).

This format is known as a network-qualified LU name ; each LU in the
network and all interconnected networks can be uniquely identified by its
network-qualified LU name. The network-LU-name portion may be a VTAM
generic resource name, or a specific LU name. If the local LU is not enabled
to support network-qualified names, APPC/MVS passes only the
network-LU-name portion to VTAM, which might cause an error if the network
LU name is not unique across networks.

v A value of 17 blanks:

If you specify a symbolic destination name in Sym_dest_name parameter, set
Partner_LU_name to blanks to use the partner LU name from the side
information.

If you do not specify a symbolic destination name, then use a blank
Partner_LU_name to indicate that the partner program is located at the same
LU as the local program (LU=OWN). If the local LU is defined as a member
of a VTAM generic resource group, APPC/MVS uses the generic resource
name for Partner_LU_name.

Mode_name
Supplied parameter
v Type: Character string
v Char Set: Type A
v Length: 8 bytes (must be padded with blanks if less than 8 bytes)

Mode_name specifies the mode name designating the network properties for
the session to be allocated for the conversation. The network properties include,
for example, the class of service to be used.

The mode name value of “SNASVCMG” is reserved for use by APPC/MVS. If a
mode name of “SNASVCMG” is specified on the Allocate service, the request is
rejected with a return code of parameter_error.

If you specify a symbolic destination name in the sym_dest_name parameter,
set mode_name to blanks to obtain the mode_name from the side information.

If you do not specify a sym_dest_name and do not specify a mode name,
APPC/MVS uses the default mode name “ATB#MODE”.

TP_name_length
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

TP_name_length specifies the length of data contained in the TP_name
parameter.

Allocate

8-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

If you specify a symbolic destination name in the sym_dest_name parameter,
set TP_name_length to 0 to use the partner TP name from the side information.

TP_name
Supplied parameter
v Type: Character string
v Char Set: 006409 (Type A if the partner TP is protected by RACF)
v Length: 1-64 bytes

TP_name specifies the name of the partner program to be connected at the
other end of the conversation.

If you specify a symbolic destination name in the sym_dest_name parameter
and set the TP_name_length parameter to zero, the TP name is obtained from
the side information file.

TP_name can specify the name of any SNA service transaction program except
for one whose first character is X'06'; see the authorization requirements in
“Requirements” on page 8-2 for more information about this exception. The
names of SNA service transaction programs can contain blank characters. For a
list of SNA service transaction programs, see SNA Transaction Programmer’s
Reference Manual for LU 6.2.

If the partner TP is to be protected by a RACF security profile in the APPCTP
class, the TP_name must consist of Type A characters only.

Return_control
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_control specifies when the local LU is to return control to the local
program, in relation to the allocation of a session for the conversation.

Valid values for this parameter are:

Value Meaning

0 When_session_allocated

Specifies to allocate a session for the conversation before returning
control to the program. An error in allocating a session is reported on
this call.

1 Immediate

Specifies to allocate a session for the conversation if a session is
immediately available, and return control to the program with a return
code indicating whether a session is allocated. An error in allocating a
session that is immediately available is reported on this call.

100 When_conwinner_allocated

Specifies to allocate a session in which the local LU is the contention
winner, before returning control to the program. As contention winner,
the LU avoids having to compete with the partner LU to establish the
session, thus potentially saving network traffic. An error in allocating a
contention winner session for the conversation is reported on this call.

Sync_level
Supplied parameter

Allocate

Chapter 8. APPC/MVS TP Conversation Callable Services 8-5

v Type: Integer
v Char Set: N/A
v Length: 32 bits

Sync_level specifies the synchronization level that the local and partner
programs can use on this conversation.

Valid values for this parameter are:

Value Meaning

0 None

Specifies that the programs will not perform confirmation processing on
this conversation. The programs will not call any services and will not
recognize any returned parameters relating to confirmation.

1 Confirm

Specifies that the programs can perform confirmation processing on this
conversation. The programs can call services and will recognize
returned parameters relating to confirmation.

2 Syncpt

Specifies that the programs can perform sync point processing on this
conversation. The programs can call services and will recognize
returned parameters relating to sync point processing.

Security_type
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Security_type specifies the type of access security information that the partner
LU uses to verify the identity of the end-user and validate access to the partner
program and its resources.

Valid values for this parameter are:

Value Meaning

100 Security_none

Specifies to omit access security information on this allocation request.

101 Security_same

Specifies to use the same user ID that is associated with the current
program the Allocate service is issued from. The password (if present)
is not used; instead, the user ID is indicated as being already verified. If
the allocation request that initiated execution of the local program
contained no security information, security information is omitted on this
allocation request. APPC can retrieve the security information from a
number of different places. If the user is authorized and the user
specifies a valid User_Token parameter, APPC will use this to obtain
the appropriate security information (a user ID and possible profile
name). If this is not specified, APPC will send the user ID associated
with the current application context environment, if this is available.

Allocate

8-6 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Otherwise, APPC will send the user ID and possible profile name that is
associated with the current executing task, or if unavailable, from the
current address space.

102 Security_pgm

Specifies to use the access security information that the local program
provides on the call. The local program provides the information by
means of the User_ID, Password, and Profile parameters. These values
are passed exactly as specified, without folding to uppercase.

Normally, User_ID and Password are required parameters for this
Security_type. However, the User_ID parameter can be specified
without the Password parameter if, on the local system, the user ID of
the issuing address space has been granted surrogate authorization for
the specified User_ID. In RACF terms, this requires READ access to
the ATBALLC.userid profile (or a generic profile) in the SURROGAT
class, where userid is the value specified on the User_ID parameter. If
surrogate authorization is granted, the user ID specified on the call will
be sent and will be indicated as being already verified. For general
information on surrogate user IDs, see z/OS SecureWay Security
Server RACF Security Administrator’s Guide. For specific information
about ATBALLC.userid profiles, see z/OS MVS Planning: APPC/MVS
Management.

Note: If surrogate authorization is used, the specified User_ID must be
a valid MVS user ID. For example, it cannot be longer than 8
characters.

User_ID
Supplied parameter
v Type: Character string
v Char Set: No restriction (Type A if APPC/MVS manages the partner LU)
v Length: 10 bytes

Specifies the user ID. The partner LU uses this value and the password to
verify the identity of the end user that initiated the allocation request. The
partner LU may use this value for auditing and accounting purposes, and,
together with the security profile (if present), to determine which partner
programs the local program can access.

When the partner LU is on MVS with RACF protection, the user ID must be 1-8
alphanumeric characters.

This parameter is significant only when the Security_type parameter contains a
value of Pgm. Otherwise, this parameter has no meaning and is ignored.

Password
Supplied parameter
v Type: Character string
v Char Set: No restriction (Type A if APPC/MVS manages the partner LU)
v Length: 10 bytes (must be left-justified and padded with blanks if less than 10

bytes)

Specifies the password. The partner LU uses this value and the user ID to
verify the identity of the end user that made the allocation request. When the
partner LU is on MVS with RACF protection, the password must be 1-8
alphanumeric characters padded with blanks.

Allocate

Chapter 8. APPC/MVS TP Conversation Callable Services 8-7

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

This parameter is significant only when the Security_type parameter contains a
value of Pgm. Otherwise, this parameter has no meaning and is ignored.

Profile
Supplied parameter
v Type: Character string
v Char Set: No restriction (Type A if APPC/MVS manages the partner LU)
v Length: 10 bytes

Profile specifies additional security information that may be used to determine
what partner programs the local program may access, and which resources the
local program may access. When the partner LU is on MVS with RACF
protection, APPC/MVS treats the profile name as a RACF group name for
verifying access to partner programs. The profile name must be 1-8
alphanumeric characters.

This parameter is significant only when the Security_type parameter contains a
value of Pgm. Otherwise, this parameter has no meaning and is ignored.

User_Token
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 1-255 bytes

User_Token specifies the RACF UTOKEN which identifies the user requesting
the Allocate. Only programs running in supervisor state or PSW key 0-7 can
specify a User_Token. To not specify a User_Token, pass a field whose first
byte contains a hexadecimal zero (X'00').

If a RACF UTOKEN is supplied, APPC/MVS uses it to obtain the appropriate
security information only when you specify a Security_Type of Security_Same.
In that case, APPC/MVS obtains the user ID and RACF group name from the
UTOKEN. This parameter will not be consulted if Security_Type is
Security_None or Security_Pgm.

Conversation_id
Returned parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

Notify_type
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. Programs can request asynchronous processing,
which returns control to the program immediately and later notifies the program
by ECB when the service is complete. The possible types are:

v None

Allocate

8-8 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.

When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the
return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during asynchronous
processing, and the specified ECB is posted when all returned parameters
are set. The completion code field in the ECB contains the return code for
the service.

Note: As of MVS/ESA SP 4.2.2, unauthorized callers can specify a Notify_type
of ECB on calls to Allocate. With MVS/ESA SP 4.2, unauthorized callers
cannot specify a Notify_type of ECB.

TP_ID
Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Allows authorized TPs to designate the transaction program instance with which
this conversation should be associated. (See “Requirements” on page 8-2 for
more information about specific authorization requirements.) Unauthorized TPs
must set this parameter to binary zeros, which causes the TP_ID assignment to
occur automatically and transparently to the transaction program.

Advanced TPs that run in supervisor state or PSW key 0-7 can select the
TP_ID assigned. See the Define_Local_TP callable service description in z/OS
MVS System Messages, Vol 3 (ASB-BPX) for information on how to create a
new TP_ID.

Local_LU_name
Supplied parameter
v Type: Character string
v Char Set: Type A
v Length: 8 bytes

Local_LU_name specifies the name of the local LU from which the caller’s
allocate request is to originate. The ability to specify the local LU name allows
the caller to associate its outbound conversations with particular LUs. You
cannot specify a VTAM generic resource name for the local LU name.

The caller’s address space must have access to the named LU. Otherwise, a
parameter_error return code is returned. Use Table 8-2 on page 8-10 to
determine whether you can specify a particular local LU.

Allocate

Chapter 8. APPC/MVS TP Conversation Callable Services 8-9

Table 8-2. Local LUs for Which an Address Space Can Allocate

LU Specified

System Base
LU,

NOSCHED1

System Base
LU, ASCH1

NOSCHED LU ASCH LU Scheduler 2
LU

Address
Space Doing

Allocate

From an
Address

Space Not
Connected to
a Scheduler

OK OK OK NO2 NO2

From an
Address
Space

Connected to
ASCH

OK OK OK OK NO2

From an
Address
Space

Connected to
Scheduler 2

OK NO2 OK NO2 OK

From an
Address

Space Not
Connected to
a Scheduler
with Prohibit
Default LU
Specified 4

NO3 NO3 NO3 NO3 NO3

Notes:
1. Columns 1 and 2 are mutually exclusive.
2. The system returns a Parameter_error return code to the caller. If the specified LU is not defined, the system also

returns a Product_specific_error return code to the caller.
3. The system returns a Product_specific_error return code to the caller.
4. For information about how to prohibit the use of a default LU for an address space, see the description of the

Set_AS_Attributes service in z/OS MVS System Messages, Vol 3 (ASB-BPX).

If the caller sets local_LU_name to blanks, the system uses the following
hierarchy to select an LU for the conversation:

1. The LU associated with the transaction program

2. If no LU is associated with the TP, the system uses the base LU for the
transaction scheduler associated with the caller’s address space.

3. If no transaction scheduler is associated with this address space, the
system uses the system base LU, which is either:

v An LU defined with the NOSCHED and BASE parameters, or

v If a base NOSCHED LU is not defined, the LU defined as the base LU
for the APPC/MVS transaction scheduler.

4. If no system base LU is defined, the system rejects the Allocate call.

For more information about base LUs and their definitions, see z/OS MVS
Planning: APPC/MVS Management.

Table 8-3 on page 8-11 shows which LU is used by default.

Allocate

8-10 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-3. Default Local LUs Used If None Are Specified

Program Calling
Allocate Service

Base LUs exist

nosched ASCH Sched 2 nosched,
ASCH

nosched,
Sched 2

ASCH,
Sched 2

nosched,
ASCH,

Sched 2

From an
Address Space
Not Connected
to a Scheduler

nosched asch NO1 nosched nosched asch nosched

From an
Address Space
Not Connected
to a Scheduler

but with prohibit
default LU
specified

NO1 NO1 NO1 NO1 NO1 NO1 NO1

From an
Address Space
Connected to

ASCH

N/A N/A N/A N/A N/A N/A N/A

From an
Address Space
Connected to

ASCH and with
prohibit default

LU specified

N/A N/A N/A N/A N/A N/A N/A

From an
Address Space
Connected to
Scheduler 2

nosched NO1 Sched 2 nosched Sched 2 Sched 2 Sched 2

From an
Address Space
Connected to

Scheduler 2 and
with prohibit
default LU
specified

NO1 NO1 Sched 2 NO1 Sched 2 Sched 2 Sched 2

Notes:

1. A Product_Specific_Error return code is returned if no base LU exists.

Timeout_value
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits
v Value range: 0-1440 (decimal)

Sets a time limit in minutes that an allocate call and subsequent APPC/MVS TP
conversation calls will wait for VTAM APPCCMD requests to complete. For
more information, see “Setting a Timeout Value for Potential Network Delays” on
page 4-13.

If the time limit is reached before the VTAM APPCCMD request completes and
returns control to APPC/MVS, the conversation will be terminated by

Allocate

Chapter 8. APPC/MVS TP Conversation Callable Services 8-11

APPC/MVS and the caller of the conversation callable service will regain
control. If the conversation call was issued with a Notify_Type=ECB
(asynchronous processing), the specified ECB will be posted when the time limit
is reached.

To alter the timeout_value set on the Allocate service, use the
Set_Timeout_Value service.

The maximum supported Timeout_Value is 1440 minutes (24 hours). A
Timeout_Value of 0 and any other positive integer (<= 1440) is valid. When a
Timeout_Value of zero is specified, the allocate call and any subsequent
APPC/MVS TP conversation calls will not be timed. You can activate the
time-out feature later by invoking the Set_Timeout_Value conversation callable
service and specifying a non-zero Timeout_Value.

When a non-zero Timeout_Value is specified and a VTAM APPCCMD request
issued during allocate processing does not complete within the time-out period,
the conversation allocation will fail and APPC/MVS will return control to the
application with a Product_Specific_Error return code.

Any error in the specification of this parameter will result in a
Program_Parameter_Check return code.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. In
cases where an error code is returned, the program should not examine any
other returned variable associated with the call because nothing is placed in the
variables.

When APPC/MVS returns an error return code to Allocate, your TP:

v Can use the conversation ID returned on the Conversation_ID parameter as
input to the Error_Extract service (which returns detailed information about
error return codes)

v Should not examine any other returned parameter associated with the call
because no values are placed in the parameters.

An allocation error resulting from the local LU’s failure to obtain a session for
the conversation is reported on this call. An allocation error resulting from the
partner LU’s rejection of the allocation request is reported on a subsequent call.

See “Return Codes” for descriptions of return codes that can be returned to a
caller of Allocate.

Return Codes
If the Return_control parameter contains a value of When_session_allocated or
When_conwinner_allocated, possible values of Return_code are:

Decimal Value Meaning
0 OK
1 Allocate_failure_no_retry
2 Allocate_failure_retry

Allocate

8-12 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

7 Sync_lvl_not_supported_lu
19 Parameter_error
20 Product_specific_error
24 Program_parameter_check
25 Program_state_check

If the Return_control parameter contains a value of Immediate, possible values of
Return_code are:

Decimal Value Meaning
0 OK
7 Sync_lvl_not_supported_lu
19 Parameter_error
20 Product_specific_error
24 Program_parameter_check
25 Program_state_check
28 Unsuccessful

The following table describes all of the possible return codes for Allocate:

Table 8-4. Return Codes for the Allocate Service

Return
Code

Value, Meaning, and Action

0 Value : OK

Meaning : The call completed successfully.

System Action : If the call specified a Notify_type of ECB, APPC/MVS posts
the ECB specified on the Notify_type parameter when APPC/MVS finishes
processing the call asynchronously.

Application Programmer Response : None required.

1 Value : Allocate_failure_no_retry

Meaning : A TP submitted an allocate request. The request specified a value
on the Return_control parameter that was other than Immediate. One of the
following occurred:

v Virtual telecommunications access method (VTAM) could not establish a
session with the partner LU.

v APPC/MVS could not establish a conversation.

System Action : The system returns this return code to the caller of Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

If the conversation is not LU=LOCAL, see z/OS Communications Server:
SNA Programmer’s LU 6.2 Guide for a description of the sense codes
included in the message from Error_Extract. If the error persists, or if the
conversation is LU=LOCAL, verify that the name specified on the
Local_LU_name parameter is correct. If the name is correct, contact the
system programmer.

System Programmer Response : At the request of the application
programmer, ensure that the local LU is defined correctly in the VTAM
application (APPL) statement in SYS1.VTAMLST.

Allocate

Chapter 8. APPC/MVS TP Conversation Callable Services 8-13

Table 8-4. Return Codes for the Allocate Service (continued)

Return
Code

Value, Meaning, and Action

2 Value : Allocate_failure_retry

Meaning : A TP submitted an allocate request. The request specified a value
on the Return_control parameter that was other than Immediate. The system
cannot allocate the conversation because of a condition that might be
temporary.

System Action : The system returns this return code to the caller of Allocate.

Application Programmer Response : Retry the allocate request.

7 Value : Sync_lvl_not_supported_lu

Meaning : A TP submitted an Allocate request with a synchronization level
that is not supported by the partner LU.

System Action : The system returns this return code to the caller of the
Allocate call.

Application Programmer Response : Ensure that the partner LU supports
the receipt of conversations with a synchronization level of syncpt.

19 Value : Parameter_error

Meaning : A local TP called an APPC service. A parameter specified on the
call is not valid. The error could be one of the following:
v The TP name is not 1 to 64 characters long.
v Either the SYMDEST name or the TP name length were not specified.
v SNASVCMG is specified as mode name.
v X'0E' or X'0F' was used as the first character of a TP name.
v X'06' was used as the first character of a TP name by a caller that was not

running either in supervisor state or with PSW key 0-7.
v An SNA service TP name is used with a mapped conversation verb.
v The partner LU name was not valid.
v The mode name was not valid.
v The local LU name specified is either undefined or not allowed; for

example, the TP might have specified a VTAM generic resource name,
which is valid only for partner LU names.

System Action : The system returns this return code to the caller of Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

20 Value : Product_specific_error

Meaning : The system found a product-specific error.

System Action : The system might write symptom records, which describe
the error, to the logrec data set.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format. If
necessary, see “Diagnosing Product-Specific Errors” on page 6-46 for more
information about product-specific errors.

Allocate

8-14 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-4. Return Codes for the Allocate Service (continued)

Return
Code

Value, Meaning, and Action

24 Value : Program_parameter_check

Meaning : The local TP called an APPC service. One of the following errors
occurred in one or more parameters specified on the call:
v An unauthorized caller passed a non-zero TP_ID.
v For a Security_type of Security_pgm, both the user ID and password were

not specified.
v For a Security_type of Security_pgm, a user ID was specified with a blank

password, or a password was specified with a blank user ID.
v The SYMDEST name was not found in the side information.
v The specified TP_ID is not associated with the address space.
v An unauthorized caller specified a UTOKEN that was non-zero.
v The specified local LU does not support protected conversations

(conversations with a synchronization level of syncpt).
v The specified Timeout_value is not valid

System Action : The system returns this return code to the caller of Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

25 Value : Program_state_check

Meaning : For a conversation with sync_level set to SYNCPT, the
conversation’s context (unit of work) is in the Backout-Required condition.
New protected conversations cannot be allocated for a context in this
condition.

System Action : The conversation allocation request fails. A new conversation
is not allocated.

Application Programmer Response : Backout the current unit of recovery
associated with the transaction program’s context.

28 Value : Unsuccessful

Meaning : The request specified an allocate_type of Immediate. One of the
following occurred:

v APPC/MVS could not establish a session with the partner LU

v Virtual telecommunications access method (VTAM) could not establish a
conversation.

System Action: The system returns this return code to the caller of the
APPC service in error.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

For more detailed information about these return codes, refer to “Appendix B.
Explanations of Return Codes for CPI Communications Services” on page B-1.

Restrictions
Transaction programs that call the Allocate service while in task mode should not
have any enabled unlocked task (EUT) functional recovery routines (FRRs)

Allocate

Chapter 8. APPC/MVS TP Conversation Callable Services 8-15

established. For more information about EUT FRRs, see the section on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

Confirm
Equivalent to:
v LU 6.2 (MC_)Confirm
v CPI Confirm (CMCFM)

Sends a confirmation request to the partner program and waits for a reply. This
service allows the local and partner programs to synchronize their processing with
one another. The LU flushes its send buffer as a function of this service.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
Conversation_id

Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

Request_to_send_received
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Request_to_send_received specifies whether or not Request_to_send
notification has been received.

CALL ATBCFM(
Conversation_id,
Request_to_send_received,
Notify_type,
Return_code

);

Figure 8-2. ATBCFM - LU 6.2 Confirm

Allocate

8-16 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Valid return values for this parameter are:

Value Meaning

0 Request_to_send_not_received

Indicates that Request_to_send notification has not been received

1 Request_to_send_received

Indicates that the partner program has issued a Request_to_send,
requesting the local program to enter Receive state.

If Return_code indicates Program_parameter_check or Program_state_check, a
value is not returned in Request_to_send_received.

Notify_type
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. Programs can request asynchronous processing,
which returns control to the program immediately and later notifies the program
by ECB when the service is complete. The possible types are:

v None

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.

When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the
return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during asynchronous
processing, and the specified ECB is posted when all returned parameters
are set. The completion code field in the ECB contains the return code for
the service.

Note: Unauthorized callers can specify a Notify_Type of ECB on calls to
Allocate.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. In
cases where the system returns an error code of Program_parameter_check or
Program_state_check, the program should not examine the
Request_to_send_received parameter (the system does not return a value in

Confirm

Chapter 8. APPC/MVS TP Conversation Callable Services 8-17

the parameter). In all other cases, the system returns a value in the
Request_to_send_received parameter (which the program can examine).

See the next section for descriptions of return codes that can be returned to a
caller of Confirm.

Return Codes
Valid return code values for the Return_code parameter are:

Table 8-5. Return Codes for the Confirm Service

Return
Code

Value, Meaning, and Action

0 Value : OK

Meaning : The call completed successfully.

System Action : If the call specified a Notify_type of ECB, APPC/MVS posts
the ECB specified on the Notify_type parameter when APPC/MVS finishes
processing the call asynchronously.

Application Programmer Response : None required.

3 Value : Conversation_type_mismatch

Meaning : The partner LU rejected an allocate request. The local TP called
the Allocate service and specified a value of Basic_conversation or
Mapped_conversation on the Conversation_type parameter. The partner TP
does not support the respective basic or mapped conversation protocol
boundary.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : When requesting the allocate, change
the Conversation_type parameter to specify a conversation type that the
partner TP supports.

5 Value : PIP_not_specified_correctly

Meaning : The partner LU rejected an allocate request. The partner TP
defined one or more initialization parameter (PIP) variables, which
APPC/MVS does not support.

System Action : The system returns this return code on a call that occurs
after the call to Allocate. The system does not return this code to callers of
the CPI Communications Allocate call.

Application Programmer Response : Ask the partner system programmer to
change the partner TP so it does not expect PIP data from the TP running on
MVS.

6 Value : Security_not_valid

Meaning : The partner LU rejected an allocate request. The specified security
information is not valid.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

Confirm

8-18 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-5. Return Codes for the Confirm Service (continued)

Return
Code

Value, Meaning, and Action

8 Value : Sync_lvl_not_supported_pgm

Meaning : The partner LU rejected an allocate request. The local TP specified
a synchronization level (on the Sync_level parameter) that the partner TP
does not support.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See “Allocate” on page 8-1 for an
explanation of the Sync_level parameter. When requesting the allocate,
ensure that the Sync_level parameter specifies a correct value.

9 Value : TPN_not_recognized

Meaning : The partner LU rejected an allocate request. The local TP specified
a partner TP that the partner LU does not recognize.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See the application programmer
response for return code six for this service.

10 Value : TP_not_available_no_retry

Meaning : The partner LU rejected an Allocate request. The local TP specified
a partner TP that is known to the partner LU, but the partner LU cannot start
the TP. The condition is not temporary. The TP should not retry the Allocate
request.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See the application programmer
response for return code six for this service.

11 Value : TP_not_available_retry

Meaning : The partner LU rejected an allocate request. The local TP specified
a partner TP that the partner LU recognizes but cannot start. The condition
might be temporary.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : Retry the Allocate request. If the error
persists, call the Error_Extract service immediately after APPC/MVS returns
this return code. See “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1 for descriptions of the types of information that Error_Extract
returns. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

Confirm

Chapter 8. APPC/MVS TP Conversation Callable Services 8-19

Table 8-5. Return Codes for the Confirm Service (continued)

Return
Code

Value, Meaning, and Action

17 Value : Deallocated_abend

Meaning : A partner TP called the Deallocate service. The request specified a
Deallocate_type of Deallocate_abend.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges information sent by the local TP that was not
received by the partner TP. The system returns this return code to the local
TP when it calls an APPC service in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

20 Value : Product_specific_error

Meaning : The system found a product-specific error.

System Action : The system might write symptom records, which describe
the error, to the logrec data set.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format. If
necessary, see “Diagnosing Product-Specific Errors” on page 6-46 for more
information about product-specific errors.

22 Value : Program_error_purging

Meaning : A partner TP called the Send_Error service for a basic or mapped
conversation. The conversation for the partner TP was in Receive or Confirm
state.

System Action : The system returns this return code to the local TP when it
calls an APPC service before sending any information. If the TP called
Send_Error while in Receive state and before it received all the information
that the partner TP sent, the system might purge the data. If the TP called
Send_Error while in Receive or Confirm state but after it received all the
information that the partner TP sent, the system does not purge the data.

Application Programmer Response : See the application programmer
response for return code six for this service.

24 Value : Program_parameter_check

Meaning : The local TP called an APPC service. One of the following errors
occurred in one or more parameters specified on the call:
v An unauthorized caller specified a Notify_type of ECB.
v The Sync_level field for the conversation was equal to sync_level_none.

System Action : The system returns this return code to the caller of the
APPC service in error.

Application Programmer Response : See the application programmer
response for return code six for this service.

Confirm

8-20 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-5. Return Codes for the Confirm Service (continued)

Return
Code

Value, Meaning, and Action

25 Value : Program_state_check

Meaning : One of the following errors occurred:

v The local TP called a service while running in a state in which the call is
not valid. The TP should not examine any other returned variables
associated with the call because nothing is placed in those variables.

v The conversation was in send state, but the TP did not finish sending a
logical record.

v The conversation is not in Send or Send-pending state.

v The Sync_level is set to syncpt, and the TP is in the Backout-required
state.

System Action : The state of the conversation remains unchanged. For a list
of states that are valid for each call, see “Appendix C. APPC/MVS
Conversation State Table” on page C-1.

Application Programmer Response : See the application programmer
response for return code six for this service.

26 Value : Resource_failure_no_retry

Meaning : An error caused the conversation to terminate. The condition is not
temporary. The application should not try to run the transaction until the
condition is corrected.

System Action : The system terminates the conversation.

Application Programmer Response : See the application programmer
response for return code six for this service.

27 Value : Resource_failure_retry

Meaning : An error caused the conversation to terminate. The condition might
be temporary.

System Action : The system terminates the conversation.

Application Programmer Response : Retry the transaction.

30 Value : Deallocated_abend_SVC

Meaning : The partner TP called Deallocate with a Deallocate_type of
Deallocate_abend_SVC.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

Confirm

Chapter 8. APPC/MVS TP Conversation Callable Services 8-21

Table 8-5. Return Codes for the Confirm Service (continued)

Return
Code

Value, Meaning, and Action

31 Value : Deallocated_abend_timer

Meaning : A partner TP called the Deallocate service with a Deallocate_type
of Deallocate_abend_timer.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

33 Value : SVC_error_purging

Meaning : A partner TP called the Send_Error service, and LU services on
the partner LU specified a value of SVC for the type of call. The conversation
for the partner TP was in Receive or Confirm state, and the call might have
caused information to be purged.

System Action : The system normally returns this code to the local TP after
the system sends some information to the partner TP. However, the system
can also return this code to the local TP before it sends any information.

Application Programmer Response : See the application programmer
response for return code six for this service.

100 Value : Take_backout

Meaning : This value is returned only when all of the following conditions are
true:

v The Sync_level is set to syncpt.

v The conversation is not in Initialize state.

v The program is using protected resources that must be backed out.

System Action : The system returns this return code to the caller of the
service.

Application Programmer Response : Before it can use this conversation or
any other protected conversations associated with the current context again,
the local TP must issue a Backout call to restore all protected resources to
their status as of the last synchronization point.

130 Value : Deallocated_abend_bo Meaning : This return code is returned only for
conversations with Sync_level set to syncpt.

The partner program issued a Deallocate call with Deallocate_type set to
deallocate_abend, or the partner LU has done so because of a partner
program abnormal-end condition.

System Action : If the conversation for the partner program was in Receive
state when the call was issued, information sent by the local program and not
yet received by the partner program is purged. The conversation is now in
Reset state.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

Confirm

8-22 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-5. Return Codes for the Confirm Service (continued)

Return
Code

Value, Meaning, and Action

131 Value : Deallocated_abend_SVC_bo Meaning : This return code is returned
only for conversations with Sync_level set to syncpt.

The partner TP called Deallocate with a Deallocate_type of
deallocate_abend_SVC.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

132 Value : Deallocated_abend_timer_bo Meaning : This return code is returned
only for conversations with Sync_level set to syncpt.

A partner TP called the Deallocate service with a Deallocate_type of
deallocate_abend_timer.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

133 Value : Resource_failure_no_retry_bo Meaning : This return code is returned
only for conversations with Sync_level set to syncpt.

An error caused the conversation to terminate. The condition is not
temporary. The application should not try to run the transaction until the
condition is corrected.

System Action : The system terminates the conversation.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

134 Value : Resource_failure_retry_bo Meaning : This return code is returned only
for conversations with Sync_level set to syncpt.

An error caused the conversation to terminate. The condition might be
temporary.

System Action : The system terminates the conversation.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

Confirm

Chapter 8. APPC/MVS TP Conversation Callable Services 8-23

Restrictions
Transaction programs that call the Confirm service while in task mode should not
have any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the section on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

Confirmed
Equivalent to:
v LU 6.2 (MC_)Confirmed
v CPI Confirmed

Sends a confirmation reply to the partner program. This service allows the local and
partner programs to synchronize their processing with one another.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
Conversation_id

Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

Notify_type
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 4-8 bytes

CALL ATBCFMD(
Conversation_id,
Notify_type,
Return_code

);

Figure 8-3. ATBCFMD - LU 6.2 Confirmed

Confirm

8-24 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. Programs can request asynchronous processing,
which returns control to the program immediately and later notifies the program
by ECB when the service is complete. The possible types are:

v None

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.

When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the
return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during asynchronous
processing, and the specified ECB is posted when all returned parameters
are set. The completion code field in the ECB contains the return code for
the service.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. In
cases where an error code is returned, the program should not examine any
other returned variable associated with the call as nothing is placed in the
variables.

See the next section for descriptions of return codes that can be returned to a
caller of Confirmed.

Return Codes
Valid return code values for the Return_code parameter are:

Table 8-6. Return Codes for the Confirmed Service

Return
Code

Value, Meaning, and Action

0 Value : OK

Meaning : The call completed successfully.

System Action : If the call specified a Notify_type of ECB, APPC/MVS posts the
ECB specified on the Notify_type parameter when APPC/MVS finishes
processing the call asynchronously.

Application Programmer Response : None required.

Confirmed

Chapter 8. APPC/MVS TP Conversation Callable Services 8-25

Table 8-6. Return Codes for the Confirmed Service (continued)

Return
Code

Value, Meaning, and Action

20 Value : Product_specific_error

Meaning : The system found a product-specific error.

System Action : The system might write symptom records, which describe the
error, to the logrec data set.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format. If
necessary, see “Diagnosing Product-Specific Errors” on page 6-46 for more
information about product-specific errors.

24 Value : Program_parameter_check

Meaning : The system detected a program parameter check.

System Action : The system returns this return code to the caller of the APPC
service in error.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

25 Value : Program_state_check

Meaning : One of the following errors occurred:

v The local TP called a service while running in a state in which the call is not
valid. The TP should not examine any other returned variables associated
with the call because nothing is placed in those variables.

v The Sync_level is set to syncpt, and the TP is in the Backout-required state.

System Action : The state of the conversation remains unchanged. For a list of
states that are valid for each call, see “Appendix C. APPC/MVS Conversation
State Table” on page C-1.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

Restrictions
Transaction programs that call the Confirmed service while in task mode should not
have any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the section on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

Deallocate
Equivalent to:
v LU 6.2 (MC_)Deallocate
v CPI Deallocate (CMDEAL)

Deallocates the specified conversation from the transaction program.

Confirmed

8-26 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
Conversation_id

Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

Deallocate_type
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Deallocate_type specifies the type of deallocation to be performed.

Valid values for this parameter are:

Value Meaning

0 Deallocate_sync_level

Specifies to perform deallocation based on the synchronization level in
effect for the conversation:

v If the synchronization level is None, execute the function of the Flush
service and deallocate the conversation normally.

v If the synchronization level is Confirm, execute the function of the
Confirm service; and if it is successful, deallocate the conversation
normally.

CALL ATBDEAL(
Conversation_id,
Deallocate_type,
Notify_type,
Return_code

);

Figure 8-4. ATBDEAL - LU 6.2 Deallocate

Deallocate

Chapter 8. APPC/MVS TP Conversation Callable Services 8-27

v If the synchronization level is syncpt, the deallocation is deferred until
the program issues a Commit call. Upon successful completion of the
Commit call, the system deallocates the conversation.

If the Commit call is not successful or the program issues a Backout
call, the system does not deallocate the conversation; instead, the
conversation is restored to the state it was in at the previous
synchronization point. (You can call Get_Attributes to determine the
state of the conversation.) If there has not been a synchronization
point since the allocation of this conversation, the conversation state
for the TP that allocated this conversation is set to Send state.

1 Deallocate_flush

Specifies to execute the function of the Flush service and deallocate the
conversation normally.

Note: You cannot specify Deallocate_flush for a conversation with a
synchronization level of syncpt.

2 Deallocate_confirm

Specifies to execute the function of the Confirm service and if it is
successful, deallocate the conversation normally.

Note: You cannot specify Deallocate_confirm for a conversation with a
synchronization level of syncpt.

3 Deallocate_abend

Specifies to run the function of the Flush service and deallocate the
conversation abnormally. Do not invoke deallocate_abend following a
Post_on_Receipt. Transaction programs that issue Deallocate_abend
after Post_on_Receipt might not regain control after issuing the
deallocate.

Notify_type
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. Programs can request asynchronous processing,
which returns control to the program immediately and later notifies the program
by ECB when the service is complete. The possible types are:

v None

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.

When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the

Deallocate

8-28 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during asynchronous
processing, and the specified ECB is posted when all returned parameters
are set. The completion code field in the ECB contains the return code for
the service.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. In
cases where an error code is returned, the program should not examine any
other returned variable associated with the call as nothing is placed in the
variables.

See the next section for descriptions of return codes that can be returned to a
caller of Deallocate.

Return Codes
If the Deallocate_type parameter contained the value Deallocate_sync_level and the
synchronization level of the conversation is none, or if the Deallocate_type
parameter contained the value Deallocate_flush or Deallocate_abend, possible
values for Return_code are:

Decimal Value Meaning
0 OK
20 Product_specific_error
24 Program_parameter_check
25 Program_state_check

If the Deallocate_type parameter contained the value Deallocate_sync_level and the
synchronization level of the conversation is confirm, or if the Deallocate_type
parameter contained the value Deallocate_confirm, possible values for Return_code
are:

Value Meaning
0 OK
3 Conversation_type_mismatch
5 PIP_not_specified_correctly
6 Security_not_valid
8 Sync_lvl_not_supported_pgm
9 TPN_not_recognized
10 TP_not_available_no_retry
11 TP_not_available_retry
17 Deallocated_abend
20 Product_specific_error
22 Program_error_purging
24 Program_parameter_check
25 Program_state_check
26 Resource_failure_no_retry
27 Resource_failure_retry
30 Deallocated_abend_SVC
31 Deallocated_abend_timer
33 SVC_error_purging

Deallocate

Chapter 8. APPC/MVS TP Conversation Callable Services 8-29

If the Deallocate_type parameter contained the value Deallocate_sync_level and the
synchronization level of the conversation is syncpt, possible values for Return_code
are:

Value Meaning
0 OK
20 Product_specific_error
24 Program_parameter_check
25 Program_state_check

The following table describes all of the possible return codes for Deallocate:

Table 8-7. Return Codes for the Deallocate Service

Return
Code

Value, Meaning, and Action

0 Value : OK

Meaning : The call completed successfully.

System Action : If the call specified a Notify_type of ECB, APPC/MVS posts
the ECB specified on the Notify_type parameter when APPC/MVS finishes
processing the call asynchronously.

If the Deallocate_type parameter contained the value deallocate_sync_level
and the synchronization level of the conversation is syncpoint, the system
defers or does not perform the deallocation; see the Deallocate_type
parameter description for more information.

Application Programmer Response : None required.

3 Value : Conversation_type_mismatch

Meaning : The partner LU rejected an allocate request. The local TP called
the Allocate service and specified a value of Basic_conversation or
Mapped_conversation on the Conversation_type parameter. The partner TP
does not support the respective basic or mapped conversation protocol
boundary.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : When requesting the allocate, change
the Conversation_type parameter to specify a conversation type that the
partner TP supports.

5 Value : PIP_not_specified_correctly

Meaning : The partner LU rejected an allocate request. The partner TP
defined one or more initialization parameter (PIP) variables, which
APPC/MVS does not support.

System Action : The system returns this return code on a call that occurs
after the call to Allocate. The system does not return this code to callers of
the CPI Communications Allocate call.

Application Programmer Response : Ask the partner system programmer to
change the partner TP so it does not expect PIP data from the TP running on
MVS.

Deallocate

8-30 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-7. Return Codes for the Deallocate Service (continued)

Return
Code

Value, Meaning, and Action

6 Value : Security_not_valid

Meaning : The partner LU rejected an allocate request. The specified security
information is not valid.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

8 Value : Sync_lvl_not_supported_pgm

Meaning : The partner LU rejected an allocate request. The local TP specified
a synchronization level (on the Sync_level parameter) that the partner TP
does not support.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See “Allocate” on page 8-1 for an
explanation of the Sync_level parameter. When requesting the allocate,
ensure that the Sync_level parameter specifies a correct value.

9 Value : TPN_not_recognized

Meaning : The partner LU rejected an allocate request. The local TP specified
a partner TP that the partner LU does not recognize.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See the application programmer
response for return code six for this service.

10 Value : TP_not_available_no_retry

Meaning : The partner LU rejected an Allocate request. The local TP specified
a partner TP that is known to the partner LU, but the partner LU cannot start
the TP. The condition is not temporary. The TP should not retry the Allocate
request.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See the application programmer
response for return code six for this service.

Deallocate

Chapter 8. APPC/MVS TP Conversation Callable Services 8-31

Table 8-7. Return Codes for the Deallocate Service (continued)

Return
Code

Value, Meaning, and Action

11 Value : TP_not_available_retry

Meaning : The partner LU rejected an allocate request. The local TP specified
a partner TP that the partner LU recognizes but cannot start. The condition
might be temporary.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : Retry the Allocate request. If the error
persists, see “Chapter 6. Diagnosing Problems with APPC/MVS TPs” on
page 6-1 for methods to use to diagnose the return code. See “Error_Extract”
on page 8-34 for the Error_Extract calling format.

17 Value : Deallocated_abend

Meaning : A partner TP called the Deallocate service. The request specified a
Deallocate_type of Deallocate_abend.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges information sent by the local TP that was not
received by the partner TP. The system returns this return code to the local
TP when it calls an APPC service in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

20 Value : Product_specific_error

Meaning : The system found a product-specific error.

System Action : The system might write symptom records, which describe
the error, to the logrec data set.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format. If
necessary, see “Diagnosing Product-Specific Errors” on page 6-46 for more
information about product-specific errors.

22 Value : Program_error_purging

Meaning : A partner TP called the Send_Error service for a basic or mapped
conversation. The conversation for the partner TP was in Receive or Confirm
state.

System Action : The system returns this return code to the local TP when it
calls an APPC service before sending any information. If the TP called
Send_Error while in Receive state and before it received all the information
that the partner TP sent, the system might purge the data. If the TP called
Send_Error while in Receive or Confirm state but after it received all the
information that the partner TP sent, the system does not purge the data.

Application Programmer Response : See the application programmer
response for return code six for this service.

Deallocate

8-32 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-7. Return Codes for the Deallocate Service (continued)

Return
Code

Value, Meaning, and Action

24 Value : Program_parameter_check

Meaning : The system detected a program parameter check. The call
specified one of the following:

v A Deallocate_type of deallocate_confirm, when the Sync_level for the
conversation was sync_level_none

v A Deallocate_type of deallocate_confirm, when the Sync_level for the
conversation was syncpt

v A Deallocate_type of deallocate_flush, when the Sync_level for the
conversation was syncpt.

System Action : The system returns this return code to the caller of the
APPC service in error.

Application Programmer Response : See the application programmer
response for return code six for this service.

25 Value : Program_state_check

Meaning : The local TP called a service while running in a state in which the
call is not valid. The TP should not examine any other returned variables
associated with the call because nothing is placed in those variables.

System Action : The state of the conversation remains unchanged. For a list
of states that are valid for each call, see “Appendix C. APPC/MVS
Conversation State Table” on page C-1. The conversation was in send state
and the TP started, but the TP did not finish sending a logical record.

Application Programmer Response : See the application programmer
response for return code six for this service.

26 Value : Resource_failure_no_retry

Meaning : An error caused the conversation to terminate. The condition is not
temporary. The application should not try to run the transaction until the
condition is corrected.

System Action : The system terminates the conversation.

Application Programmer Response : See the application programmer
response for return code six for this service.

27 Value : Resource_failure_retry

Meaning : An error caused the conversation to terminate. The condition might
be temporary.

System Action : The system terminates the conversation.

Application Programmer Response : Retry the transaction.

Deallocate

Chapter 8. APPC/MVS TP Conversation Callable Services 8-33

Table 8-7. Return Codes for the Deallocate Service (continued)

Return
Code

Value, Meaning, and Action

30 Value : Deallocated_abend_SVC

Meaning : The partner TP called Deallocate with a Deallocate_type of
Deallocate_abend_SVC.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

31 Value : Deallocated_abend_timer

Meaning : A partner TP called the Deallocate service with a Deallocate_type
of Deallocate_abend_timer.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

33 Value : SVC_error_purging

Meaning : A partner TP called the Send_Error service, and LU services on
the partner LU specified a value of SVC for the type of call. The conversation
for the partner TP was in Receive or Confirm state, and the call might have
caused information to be purged.

System Action : The system normally returns this code to the local TP after
the system sends some information to the partner TP. However, the system
can also return this code to the local TP before it sends any information.

Application Programmer Response : See the application programmer
response for return code six for this service.

Restrictions
Transaction programs that call the Deallocate service while in task mode should not
have any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the section on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

Error_Extract
Returns detailed information about errors indicated by APPC/MVS error return
codes. Error_Extract provides reason codes and messages that describe errors that
the local system finds, and error log information and a product set ID for errors that
a remote TP or system finds and reports. Error_Extract returns error information
only for the last APPC TP conversation service or CPI Communications call that
completed processing for that conversation.

Deallocate

8-34 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

See “Chapter 6. Diagnosing Problems with APPC/MVS TPs” on page 6-1 for more
information about how to use the Error_Extract service.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format
The figure below shows the syntax of the CALL statement for the Error_Extract
service. You must code all parameters on the CALL statement in the order shown.

Parameters
The following section describes the parameters you specify when calling the
Error_Extract service.

Conversation_ID
Supplied parameter
v Type: Character string
v Char Set: N/A
v Length: 8 bytes

Conversation_ID specifies the conversation ID associated with the conversation
for which you want to return problem determination information. The
conversation ID, sometimes called a resource identifier, identifies a conversation
to the system.

If APPC/MVS cannot establish a conversation, APPC/MVS still assigns a
conversation ID to the allocate request. Your application specifies that
conversation ID on this parameter.

Service_name
Returned parameter

CALL ATBEES3(
Conversation_ID,
Service_name,
Service_reason_code,
Message_text_length,
Message_text,
Error_log_product_set_ID_length,
Error_log_product_set_ID,
Error_log_information_length,
Error_log_information,
Reason_code,
Return_code

);

Figure 8-5. ATBEES3 - LU 6.2 Error_Extract

Error_Extract

Chapter 8. APPC/MVS TP Conversation Callable Services 8-35

v Type: Character
v Char Set: EBCDIC
v Length: 8 bytes

Service_name specifies the name of the conversation callable service for which
Error_Extract is returning error information. The name appears in the same
format in which the call is coded (for example, for a Send request, the name is
ATBSEND). Error_Extract returns a value on this parameter only when
APPC/MVS returns an error return code to the caller of the service in error.

Service_reason_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Service_reason_code specifies the reason code for the call to the APPC/MVS
conversation service in error (the service specified on the Service_Name
parameter). Error_Extract returns a value on this parameter only when
Error_Extract receives a zero return code.

Message_text_length
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Message_text_length indicates the total number of characters that appear in the
message specified on the Message_text parameter. Error_Extract returns a
value on this parameter only when APPC/MVS returns an error return code to
the caller of the service in error.

Message_text
Returned parameter
v Type: Character
v Char Set: EBCDIC
v Length: 256 bytes

Message_text contains a message that describes an error on the call to the
service specified on the Service_name parameter. Your application can write
this message to the output stream. Error_Extract returns a value on this
parameter only when APPC/MVS returns an error return code to the caller of
the service in error. If APPC/MVS is the partner system that supplies this
message text, the data returned for this parameter will appear as a message in
the format ATB8xxxxI. See “Error_Extract (ATB8) Messages” on page 11-24 for
explanations of messages returned by APPC/MVS.

Error_log_product_set_ID_length
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Error_log_product_set_ID_length is the length of the value returned on the
Error_Log_Product_Set_ID parameter.

v If no product set ID information is available from the partner system,
APPC/MVS sets the value on this parameter to zero.

Error_Extract

8-36 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v If product set ID information is available from the partner system, APPC/MVS
sets the value on this parameter to a number from 1 through 256.

If more than 256 bytes of product set ID information is available, APPC/MVS
returns only the first 256 bytes of that information.

Error_log_product_set_ID
Returned parameter
v Type: Character
v Char Set: N/A
v Length: 256 bytes

Error_log_product_set_ID identifies the partner product that provided error log
information, which is specified on the Error_log_information parameter for this
service. APPC/MVS returns a value on this parameter only when the
Return_code parameter specifies a zero value and the value returned on the
Error_Log_Product_Set_ID_Length parameter is greater than zero. If the
product set ID is more than 256 bytes long, APPC/MVS returns only the first
256 bytes of the product set ID.

For information about the format of a product set ID, see the descriptions of the
Product Set ID (X'10') and the Product Identifier (X'11') MS Common
Subvectors in SNA Formats.

Error_log_information_length
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Error_log_information_length specifies the length of the log information received
from a partner TP or system. If no error log information is available from the
partner TP or system, APPC/MVS sets the value on this parameter to zero.

Error_log_information
Returned parameter
v Type: Character
v Char Set: N/A
v Length: 512 bytes

Error_log_information contains a message that describes an error found by a
partner system or TP. APPC/MVS returns a value in this field only when the
Error_log_information_length parameter specifies a non-zero value (indicating
that APPC/MVS received error log information from a partner TP or system).
Error_Extract returns a value on this parameter only when APPC/MVS returns
an error return code to the caller of the service in error. If APPC/MVS is the
partner system that supplies this error log information, the data returned for this
parameter will appear as a message in the format ASBxxxxxI or ATB7xxxxI.
See “Error_Extract Error Log Information (ASB, ATB7) Messages” on page 11-4
for explanations of messages returned by APPC/MVS.

Reason_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Error_Extract

Chapter 8. APPC/MVS TP Conversation Callable Services 8-37

Reason_code contains additional information about the result of the call to
Error_Extract, when the Return_code parameter contains a value other than
zero or 64 (decimal).

See “Return and Reason Codes” for valid reason codes.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Return_code specifies the result of the call to Error_Extract. If the return_code
parameter contains zero or 64 (decimal), there is no reason code. For other
return codes, check the Reason_code parameter for additional information
about the result of the call.

See “Return and Reason Codes” for valid reason codes.

Return and Reason Codes
When the Error_Extract service returns control to your program, the Return_code
and Reason_code parameters contain one of the following sets of values:

Return Code
(decimal)

Reason Code
(decimal)

Meaning and Action

0 — Meaning : The call completed successfully.

System Action : The system continues processing.

Application Programmer Response : None required.

4 42 Meaning : A TP called the Error_Extract service to return
information for an APPC/MVS service that Error_Extract
does not support.

System Action : Error_Extract does not return any error
information for the specified conversation.

Application Programmer Response : Ensure that your TP
calls Error_Extract for a supported MVS TP conversation
service or CPI Communications call that receives an error
return code. Also ensure that the conversation ID specified
on the call to Error_Extract is the same as the conversation
ID specified on the call to the service that received the
error return code.

8 22 Meaning : The conversation ID specified on the call to
Error_Extract is not valid.

System Action : Error_Extract does not return any error
information for the specified conversation.

Application Programmer Response : Validate that the
conversation ID is the same as the conversation ID
specified on the call to the service in error. If so, validate
that the conversation was not deallocated normally. If the
problem persists, ensure that the address space from
which the Error_Extract was called was not cleaned up.

Error_Extract

8-38 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Return Code
(decimal)

Reason Code
(decimal)

Meaning and Action

16 8 Meaning: The caller held one or more locks when it called
Error_Extract.

System Action : Error_Extract does not return any error
information for the specified conversation.

Application Programmer Response : Issue the SETLOCK
assembler macro to release all held locks held before
calling Error_Extract.

32 16 Meaning: An internal error occurred in APPC/MVS.

System Action : Error_Extract does not return any error
information for the specified conversation.

Application Programmer Response : Ask the system
programmer to contact the IBM Support Center. Tell the
system programmer to provide the Support Center with the
record that APPC/MVS writes to the logrec data set.

64 — Meaning : APPC/MVS is not active.

System Action : Error_Extract cannot return any error
information for the specified conversation.

Application Programmer Response : Ask the operator to
enter a START APPC command to start APPC/MVS.

Restrictions
Programs that call the Error_Extract service while in task mode should not have any
enabled unlocked task (EUT) functional recovery routines (FRRs) established. For
more information about EUT FRRs, see the section on providing recovery in z/OS
MVS Programming: Authorized Assembler Services Guide.

Flush
Equivalent to:
v LU 6.2 (MC_)Flush
v CPI Flush (CMFLUS)

Flushes the local LU’s send buffer. The LU sends any information it has buffered to
the partner LU.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Error_Extract

Chapter 8. APPC/MVS TP Conversation Callable Services 8-39

Format

Parameters
Conversation_id

Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

Notify_type
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. Programs can request asynchronous processing,
which returns control to the program immediately and later notifies the program
by ECB when the service is complete. The possible types are:

v None

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.

When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the
return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during asynchronous
processing, and the specified ECB is posted when all returned parameters
are set. The completion code field in the ECB contains the return code for
the service.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

CALL ATBFLUS(
Conversation_id,
Notify_type,
Return_code

);

Figure 8-6. ATBFLUS - LU 6.2 Flush

Flush

8-40 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Return_code specifies the return code that is returned to the local program. In
cases where an error code is returned, the program should not examine any
other returned variable associated with the call as nothing is placed in the
variables.

See the next section for descriptions of return codes that can be returned to a
caller of Flush.

Return Codes
Valid return code values for the Return_code parameter are:

Table 8-8. Return Codes for the Flush Service

Return
Code

Value, Meaning, and Action

0 Value : OK

Meaning : The call completed successfully.

System Action : If the call specified a Notify_type of ECB, APPC/MVS posts
the ECB specified on the Notify_type parameter when APPC/MVS finishes
processing the call asynchronously.

Application Programmer Response : None required.

20 Value : Product_specific_error

Meaning : The system found a product-specific error.

System Action : The system might write symptom records, which describe
the error, to the logrec data set.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format. If
necessary, see “Diagnosing Product-Specific Errors” on page 6-46 for more
information about product-specific errors.

24 Value : Program_parameter_check

Meaning : The system detected a program parameter check.

System Action : The system returns this return code to the caller of the
APPC service in error.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

Flush

Chapter 8. APPC/MVS TP Conversation Callable Services 8-41

Table 8-8. Return Codes for the Flush Service (continued)

Return
Code

Value, Meaning, and Action

25 Value : Program_state_check

Meaning : One of the following errors occurred:

v The local TP called a service while running in a state in which the call is
not valid. The TP should not examine any other returned variables
associated with the call because nothing is placed in those variables.

v The conversation was in send state, but the TP did not finish sending a
logical record.

v The conversation is not in Send or Send-pending state.

v The Sync_level is set to syncpt, and the TP is in the Backout-required
state.

System Action : The state of the conversation remains unchanged. For a list
of states that are valid for each call, see “Appendix C. APPC/MVS
Conversation State Table” on page C-1. The conversation was in send state
and the TP started, but the TP did not finish sending a logical record.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

Restrictions
Transaction programs that call the Flush service while in task mode should not have
any enabled unlocked task (EUT) functional recovery routines (FRRs) established.
For more information about EUT FRRs, see the section on providing recovery in
z/OS MVS Programming: Authorized Assembler Services Guide.

Get_Attributes
Related to:
v LU 6.2 (MC_)Get_Attributes
v CPI Communications Extract_Conv_State (CMECS), Extract_Mode_Name

(CMEMN), Extract_Part_LU_Name (CMEPLN), Extract_Sync_Level (CMESL)

Call the Get_Attributes service to determine certain attributes of the conversation
specified by the Conversation_ID parameter. This service is most useful when
issued for an inbound conversation; the returned parameters provide important
information about the attributes with which the conversation was allocated. Some of
the data returned by Get_Attributes can be obtained only through this service.
However, several fields provide information that is also available from other
APPC/MVS services. For example, you can determine the conversation_type
returned by Get_Attributes by calling the Get_Type service.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts

Flush

8-42 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
Conversation_id

Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

Partner_LU_name
Returned parameter
v Type: Character string
v Char Set: Type A
v Length: 17 bytes

Partner_LU_name specifies the name of the LU at which the partner program is
located.

The Partner_LU_name can be one of the following:

v A VTAM generic resource name

If the partner LU is a member of a generic resource group, the
Partner_LU_name might be the 1- to 8-byte generic resource name of the
group.

v The network-qualified name of the partner logical unit.

The network-qualified name consists of two Type A character strings that
represent the network ID and network LU name, respectively. Both strings
are between 1 and 8 bytes in length, concatenated together by a period:

CALL ATBGTA2(
Conversation_id,
Partner_LU_name,
Mode_name,
Sync_level,
Conversation_correlator,
LUW_id,
TP_name_length,
TP_name,
Local_LU_name,
Conversation_type,
User_id,
Profile,
User_token,
Conversation_state,
Return_code

);

Figure 8-7. ATBGTA2 - LU 6.2 Get Attributes

Get_Attributes

Chapter 8. APPC/MVS TP Conversation Callable Services 8-43

network_ID.network_LU_name. The network-LU-name portion may be a
VTAM generic resource name, or a specific LU name.

v A Type A character string that is 1 to 8 bytes in length. This string represents
the network LU name.

Mode_name
Returned parameter
v Type: Character string
v Char Set: Type A
v Length: 8 bytes

Mode_name specifies the mode name designating the network properties for
the session to be allocated for the conversation. The network properties include,
for example, the class of service to be used.

If Mode_name is less than 8 bytes in length, it is padded on the right with
blanks.

Sync_level
Returned parameter
v Type: Integer
v Length: 32 bits

Sync_level specifies the synchronization level that the local and partner
programs can use on this conversation.

Valid values for this parameter are:

Value Meaning

0 None

Specifies that the programs will not perform confirmation processing on
this conversation. The programs will not issue any protocol boundary
calls and will not recognize any returned parameters relating to
synchronization functions.

1 Confirm

Specifies that the programs can perform confirmation processing on this
conversation. The programs may issue protocol boundary calls and will
recognize returned parameters relating to confirmation.

2 Syncpt

Specifies that the programs can perform sync point processing on this
conversation. The programs can call services and will recognize
returned parameters relating to sync point processing.

Conversation_correlator
Returned parameter
v Type: Character string
v Char Set: N/A
v Length: 8 bytes

Conversation_correlator specifies further qualification of the LU work identifier
(LUW_id) and helps restore protected resources to a consistent state following
the failure of an LU, session, or conversation.

If there is no conversation correlator for the conversation, this field contains
binary zeroes.

Get_Attributes

8-44 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

LUW_id
Returned parameter
v Type: Structure
v Char set: N/A
v Length: 26 bytes

LUW_id contains the logical unit of work (LUW) identifier. The LUW identifier is
used by some logical units for accounting purposes. If the value returned on the
Sync_level parameter is syncpt, a protected LUW_id is returned in this
parameter. If no LUW identifier is present, this field contains binary zeroes.

TP_name_length
Returned parameter
v Type: Integer
v Length: 32 bits

TP_name_length contains the length of the data in the TP_name parameter. If
the conversation_id parameter specifies an outbound conversation, this field is
set to zero.

TP_name
Returned parameter
v Type: Character string
v Char Set: 00640 or Type A (Type A if the partner TP is protected by RACF)
v Length: 1-64 bytes

When the conversation_id parameter specifies an inbound conversation,
TP_name contains the name of the local TP for this conversation. If you called
the Register_For_Allocates service to become a server of inbound allocate
requests, this parameter contains the TP name specified in the FMH-5 that
contained the request. When the conversation_id parameter specifies an
outbound conversation, this field is not set.

Local_LU_name
Returned parameter
v Type: Character string
v Char Set: Type A
v Length: 8 bytes

Local_LU_name specifies the name of the local LU from which the conversation
is initiated.

Conversation_type
Returned parameter
v Type: Integer
v Length: 32 bits

Conversation_type specifies how the data sent on this conversation is to be
formatted.

Valid values for this parameter are:

Value Meaning

0 Basic_conversation

Specifies that, in this conversation, the calling program and its partner
will format their data into separate logical records before sending it.
Each record begins with a 2-byte length field (LL) that specifies the
amount of data in the record.

Get_Attributes

Chapter 8. APPC/MVS TP Conversation Callable Services 8-45

1 Mapped_conversation

Specifies that, in this conversation, the calling program and its partner
will rely on APPC to format the data they send.

User_id
Returned parameter
v Type: Character string
v Char Set: No restriction (Type A if APPC/MVS manages the partner LU)
v Length: 10 bytes (left-justified if the user ID is less than 10 bytes)

If the Conversation_id parameter specifies an inbound conversation, User_id
returns the user ID associated with the inbound allocate request. If the
Conversation_id parameter specifies an outbound conversation, this field
contains blanks.

Profile
Returned parameter
v Type: Character string
v Char Set: No restriction (Type A if APPC/MVS manages the partner LU)
v Length: 10 bytes (left-justified if the profile name is less than 10 bytes)

If the Conversation_id parameter specifies an inbound conversation, profile
contains the RACF group name associated with the inbound allocate request.
When the Conversation_id parameter specifies an outbound conversation, this
field contains blanks.

User_token
Returned parameter
v Type: Structure
v Char Set: N/A
v Length: 80 bytes

If the Conversation_id parameter specifies an inbound conversation, User_token
contains the RACF UTOKEN that identifies the user associated with the
inbound allocate. This token is encrypted.

If the conversation_id parameter specifies an outbound conversation, this field
is blanks. No UTOKEN is returned for an outbound conversation.

Conversation_state
Returned parameter
v Type: Integer
v Length: 32 bits

Conversation_state specifies the current state of the conversation, which is one
of the following:

Value Conversation State
2 Initialize
3 Send
4 Receive
5 Send-Pending
6 Confirm
7 Confirm-Send
8 Confirm-Deallocate
9 Defer-Receive
10 Defer-Deallocate
11 Sync-Point

Get_Attributes

8-46 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

12 Sync-Point-Send
13 Sync-Point-Deallocate

For descriptions, see “APPC/MVS TP Conversation States” on page 4-1.

Return_code
Returned parameter
v Type: Integer
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. In
cases where an error code is returned, the program should not examine any
other returned variable associated with the call as nothing is placed in the
variables.

See “Return Codes” for descriptions of return codes that can be returned to a
caller of Get_Attributes.

Return Codes
Valid return code values for the Return_code parameter are:

Table 8-9. Return Codes for the Get_Attributes Service

Return
Code

Value, Meaning, and Action

0 Value : OK

Meaning : The call completed successfully.

System Action : The system continues processing.

Application Programmer Response : None required.

20 Value : Product_specific_error

Meaning : The system found a product-specific error.

System Action : The system might write symptom records, which describe
the error, to the logrec data set.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format. If
necessary, see “Diagnosing Product-Specific Errors” on page 6-46 for more
information about product-specific errors.

24 Value : Program_parameter_check

Meaning : The system detected a program parameter check.

System Action : The system returns this return code to the caller of the
APPC service in error.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

Get_Attributes

Chapter 8. APPC/MVS TP Conversation Callable Services 8-47

Table 8-9. Return Codes for the Get_Attributes Service (continued)

Return
Code

Value, Meaning, and Action

100 Value : Take_backout

Meaning : This value is returned only when all of the following conditions are
true:

v The Sync_level is set to syncpt.

v The conversation is not in Initialize state.

v The program is using protected resources that must be backed out.

System Action : The system returns this return code to the caller of the
service.

Application Programmer Response : Before it can use this conversation or
any other protected conversations associated with the current context again,
the local TP must issue a Backout call to restore all protected resources to
their status as of the last synchronization point.

Restrictions
TPs that call the Get_Attributes service while in task mode should not have any
enabled unlocked task (EUT) functional recovery routines (FRRs) established. For
more information about EUT FRRs, see the section on providing recovery in z/OS
MVS Programming: Authorized Assembler Services Guide.

Get_Conversation
Equivalent to:
v (No LU 6.2 equivalent)
v CPI Accept_Conversation (CMACCP)

To be used by an allocated TP to return the conversation ID that the TP will use to
reference the conversation on which it was attached, and also to return information
pertaining to the specified conversation.

Get_Conversation cannot be issued once activity has begun on the conversation. It
is only allowable as the very first call issued for the conversation. After a call has
been issued on the conversation, subsequent calls to the Get_Conversation service
will return a return code of Program_State_Check.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Get_Attributes

8-48 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Format

Parameters
Conversation_id

Returned parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

Conversation_type
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Conversation_type specifies the type of conversation on which the call is
issued.

Valid values for this parameter are:

Value Meaning
0 Basic_conversation
1 Mapped_conversation

Partner_LU_name
Returned parameter
v Type: Character string
v Char Set: Type A
v Length: 17 bytes

Partner_LU_name specifies the name of the LU at which the partner program is
located.

The value returned for Partner_LU_name is the network-qualified name of the
partner logical unit. The network-qualified name consists of two Type A
character strings that represent the network ID and network LU name,
respectively. Both strings are between 1 and 8 bytes in length, concatenated
together by a period: network_ID.network_LU_name.

CALL ATBGETC(
Conversation_id,
Conversation_type,
Partner_LU_name,
Mode_name,
Sync_level,
Conversation_correlator,
Return_code

);

Figure 8-8. ATBGETC - Get_Conversation

Get_Conversation

Chapter 8. APPC/MVS TP Conversation Callable Services 8-49

If the partner LU is a member of a generic resource group, the
network-LU-name portion of Partner_LU_name might be the 1- to 8-byte
generic resource name of the group.

Mode_name
Returned parameter
v Type: Character string
v Char Set: Type A
v Length: 8 bytes

Mode_name specifies the mode name designating the network properties for
the session to be allocated for the conversation. The network properties include,
for example, the class of service to be used.

If Mode_name is less than 8 bytes in length, it is padded on the right with
blanks.

Sync_level
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Sync_level specifies the synchronization level that the local and partner
programs can use on this conversation.

Valid values for this parameter are:

Value Meaning

0 None

Specifies that the programs will not perform confirmation processing on
this conversation. The programs will not issue any protocol boundary
calls and will not recognize any returned parameters relating to
synchronization functions.

1 Confirm

Specifies that the programs can perform confirmation processing on this
conversation. The programs may issue protocol boundary calls and will
recognize returned parameters relating to confirmation.

2 Syncpt

Specifies that the programs can perform sync point processing on this
conversation. The programs can call services and will recognize
returned parameters relating to sync point processing.

Conversation_correlator
Returned parameter
v Type: Character string
v Char Set: N/A
v Length: 8 bytes

Conversation_correlator specifies further qualification of the LU work identifier
(LUW_id) and helps restore protected resources to a consistent state following
the failure of an LU, session, or conversation.

If there is no conversation correlator for the conversation, this field contains all
binary zeroes.

Get_Conversation

8-50 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. In
cases where an error code is returned, the program should not examine any
other returned variable associated with the call as nothing is placed in the
variables.

See “Return Codes” for descriptions of return codes that can be returned to a
caller of Get_Conversation.

Return Codes
Valid return code values for the Return_code parameter are:

Table 8-10. Return Codes for the Get_Conversation Service

Return
Code

Value, Meaning, and Action

0 Value : OK

Meaning : The call completed successfully.

System Action : The system continues processing.

Application Programmer Response : None required.

20 Value : Product_specific_error

Meaning : The system found a product-specific error.

System Action : The system might write symptom records, which describe
the error, to the logrec data set.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format. If
necessary, see “Diagnosing Product-Specific Errors” on page 6-46 for more
information about product-specific errors.

25 Value : Program_state_check

Meaning : The local TP called a service while running in a state in which the
call is not valid. The TP should not examine any other returned variables
associated with the call because nothing is placed in those variables.

System Action : The state of the conversation remains unchanged. For a list
of states that are valid for each call, see “Appendix C. APPC/MVS
Conversation State Table” on page C-1. The conversation was in send state
and the TP started, but the TP did not finish sending a logical record.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

Restrictions
Transaction programs that call the Get_Conversation service while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines

Get_Conversation

Chapter 8. APPC/MVS TP Conversation Callable Services 8-51

(FRRs) established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

Get_TP_Properties

Note: You cannot use the Error_Extract conversation service to diagnose errors in
calls to the Get_TP_Properties service.

Equivalent to:
v LU 6.2 Get_TP_Properties
v (No CPI equivalent)

Returns information pertaining to the transaction program issuing the call.

This service requires TP resources to be associated with the calling address space
to complete successfully. This service should be issued after issuing one of the
following services that will associate TP resources to the calling address space:
v CMINIT
v Allocate
v Register_For_Allocate
v Define_Local_TP

This service may also be issued:

v After the transaction scheduler XCF message user routine has received an
Allocate TP request message to obtain information pertaining to the transaction
program represented by the received message.

v When an application program begins executing as the result of a transaction
scheduler receiving and processing an Allocate TP request.

v Before the Get_Conversation or CPI Accept_Conversation (CMACCP) services.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB mode
Cross memory mode: PASN = HASN = SASN or PASN ¬= HASN ¬= SASN
Amode: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Get_Conversation

8-52 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Format

Parameters
Own_TP_name_length

Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Own_TP_name_length specifies the length of data contained in the
Own_TP_name parameter. If the Own_TP_name parameter does not contain a
TP_name on return from this service, Own_TP_name_length is set to zero.

Own_TP_name
Returned parameter
v Type: Character string
v Char Set: 00640 or Type A
v Length: 64 bytes

Own_TP_name specifies the name of the local program as specified in the
FMH-5 allocation request. This parameter will only contain a return value if the
local program was started as the result of an attach request from a partner
program. If this is not the case, there is no TP name to be returned, and
Own_TP_Name_Length is set to zero.

Own_fully_qualified_LU_name
Returned parameter
v Type: Character string
v Char Set: Type A
v Length: 17 bytes

Own_fully_qualified_LU_name specifies the network-qualified name of the local
logical unit.

User_id
Returned parameter
v Type: Character string
v Char Set: No restriction
v Length: 10 bytes

CALL ATBGTP4(
Own_TP_name_length,
Own_TP_name,
Own_fully_qualified_LU_name,
User_id,
Profile,
LUW_id,
Vote_Read_Only_Permitted,
Wait_For_Outcome,
Action_If_Problems,
Return_code

);

Figure 8-9. ATBGTP4 - LU 6.2 Get_TP_Properties

Get_TP_Properties

Chapter 8. APPC/MVS TP Conversation Callable Services 8-53

User_id specifies the userid that is associated with the caller’s address space. If
the address space contains a scheduled transaction program, the User_id
parameter contains the userid that accompanied the inbound transaction
program request.

Profile
Returned parameter
v Type: Character string
v Char Set: No restriction
v Length: 10 bytes

Profile specifies the RACF group name associated with the caller’s address
space. If the address space contains a scheduled transaction program, the
profile parameter contains the RACF group name that accompanied the
inbound transaction program request. If the inbound request did not include a
profile, the profile parameter contains the default profile for the transaction
program that issued the request.

LUW_id
Returned parameter
v Type: Structure
v Char Set: N/A
v Length: 26 bytes

LUW_id specifies the logical unit of work (LUW) identifier. The LUW identifier is
used by some logical units for accounting purposes. If no LUW identifier is
present, this field will contain binary zeroes.

Note: A LUW_id for protected resources (such as a protected conversation) is
called a protected LUW_id. Because a TP might have more than one
protected LUW_id associated with it, APPC/MVS does not return a
protected LUW_id in this parameter, even if one exists and no LUW_id
for unprotected resources exists. To obtain the protected LUW_id of a
protected conversation, use the Get_Attributes service.

Vote_Read_Only_Permitted
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Vote_Read_Only_Permitted specifies whether the local LU may vote read only
in a sync point operation. This syncpt option can be set by calling the
Set_Syncpt_Options service.

Possible returned values for this parameter are:

Value Meaning

1 NO

Specifies that voting read only in a sync point operation is not allowed.

2 YES

Specifies that voting read only in a sync point operation is allowed.

Wait_For_Outcome
Returned parameter
v Type: Integer
v Char Set: N/A

Get_TP_Properties

8-54 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v Length: 32 bits

Wait_For_Outcome specifies whether the outcome of the sync point operation
at all subordinate resources in the distributed transaction must be known before
control is returned to the program. This syncpt option can be set by calling the
Set_Syncpt_Options service.

Possible returned values for this parameter are:

Value Meaning

1 NO

Specifies that the transaction program need not wait for the outcome of
the syncpoint before regaining control.

2 YES

Specifies that the transaction program must wait for the outcome of the
syncpoint before regaining control.

Action_If_Problems
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Action_If_Problems specifies the action to be taken with protected resources if
the LU learns of a problem at a point in the sync point operation when it does
not know whether to commit or backout. This syncpt option can be set by
calling the Set_Syncpt_Options service.

Possible returned values for this parameter are:

Value Meaning

1 Commit

Specifies that the transaction program should commit its resources in
the event of a problem where it is unsure whether it should commit or
backout,

2 Backout

Specifies that the transaction program should backout its resources in
the event of a problem where it is unsure whether it should commit or
backout,

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. In
cases where an error code is returned, the program should not examine any
other returned variable associated with the call as nothing is placed in the
variables.

See “Return Codes” on page 8-56 for descriptions of return codes that can be
returned to a caller of Get_TP_Properties.

Get_TP_Properties

Chapter 8. APPC/MVS TP Conversation Callable Services 8-55

Return Codes
Valid return code values for the Return_code parameter are:

Table 8-11. Return Codes for the Get_TP_Properties Service

Return
Code

Value, Meaning, and Action

0 Value : OK

Meaning : The call completed successfully.

System Action : The system continues processing.

Application Programmer Response : None required.

20 Value : Product_specific_error

Meaning : The system found a product-specific error.

System Action : The system might write symptom records, which describe
the error, to the logrec data set.

Application Programmer Response : See “Diagnosing Product-Specific
Errors” on page 6-46 for more information about product-specific errors.

25 Value : Program_state_check

Meaning : The program called a service under conditions in which the call is
not valid; for example:

v APPC/MVS might not recognize the program as a local TP.

v APPC/MVS might have encountered temporary environmental conditions
that prevent it from obtaining the requested information.

The program should not examine any other returned variables associated
with the call because nothing is placed in those variables.

System Action : The state of the conversation remains unchanged.

Application Programmer Response : Design the program to re-issue the
call; this error condition might be temporary.

Restrictions
Transaction programs that call the Get_TP_Properties service while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

Get_Type
Equivalent to:
v LU 6.2 Get_Type
v CPI Extract_Conv_Type (CMECT)

Returns the type of conversation to which the specified conversation ID is assigned.

Requirements

Authorization: Supervisor state or problem state, any PSW key

Get_TP_Properties

8-56 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
Conversation_id

Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

Conversation_type
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Conversation_type specifies the type of conversation on which the call is
issued.

Valid values for this parameter are:

Value Meaning
0 Basic_conversation
1 Mapped_conversation

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. In
cases where an error code is returned, the program should not examine any
other returned variable associated with the call as nothing is placed in the
variables.

CALL ATBGETT(
Conversation_id,
Conversation_type,
Return_code

);

Figure 8-10. ATBGETT - LU 6.2 Get_Type

Get_Type

Chapter 8. APPC/MVS TP Conversation Callable Services 8-57

See “Return Codes” for descriptions of return codes that can be returned to a
caller of Get_Type.

Return Codes
Valid return code values for the Return_code parameter are:

Table 8-12. Return Codes for the Get_Type Service

Return
Code

Value, Meaning, and Action

0 Value : OK

Meaning : The call completed successfully.

System Action : The system continues processing.

Application Programmer Response : None required.

20 Value : Product_specific_error

Meaning : The system found a product-specific error.

System Action : The system might write symptom records, which describe
the error, to the logrec data set.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format. If
necessary, see “Diagnosing Product-Specific Errors” on page 6-46 for more
information about product-specific errors.

24 Value : Program_parameter_check

Meaning : The system detected a program parameter check.

System Action : The system returns this return code to the caller of the
APPC service in error.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

Restrictions
Transaction programs that call the Get_Type service while in task mode should not
have any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the section on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

Post_on_Receipt
Requests to be notified when data or status is ready to be received for a specified
conversation. Specifically, Post_on_Receipt notifies the caller (through an ECB the
caller specifies) for the following situations:

v A complete logical record is available to be received from a partner program

v Conversation status (control information) is available

v A non-zero return code is available to be received because of an action taken by
the partner program (such as deallocating the conversation).

Get_Type

8-58 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

When Post_on_Receipt posts the specified ECB, the caller can determine which of
the preceding information is available by calling the Receive_and_Wait or
Receive_Immediate service and checking the returned parameters.

You can call the Post_on_Receipt service in Receive state only, and it does not
alter the conversation state. This function only applies to basic conversations.

Asynchronous Processing
To be notified asynchronously when data or status is ready for you to receive on a
conversation, you can use the Post_on_Receipt service. APPC/MVS posts the ECB
specified by the ECB_address parameter when data or status, or both, is available
to be received. The caller is free to call other conversation services (such as
Request_to_Send) while APPC/MVS processes the Post_on_Receipt request
asynchronously.

Your call to Post_on_Receipt remains in effect until the specified ECB is posted, or
the call is cancelled. Thereafter, to obtain subsequent notification of data or status
to be received, issue a new call to the Post_on_Receipt service.

APPC/MVS cancels an active Post_on_Receipt request if the caller issues any of
the following services on the same conversation:
v Receive_Immediate
v Receive_and_Wait
v Deallocate (with the deallocate_type parameter set to deallocate_abend)
v Send_Error.

You can call the Post_on_Receipt service any number of times on a given
conversation. However, if you call the Post_on_Receipt service multiple times
before the specified ECB is posted, only one post can occur. In this situation,
APPC/MVS posts the ECB that was specified on the most recent call to the
Post_on_Receipt service.

Receiving Asynchronous Notification
When asynchronous processing is complete, the POST completion code in the ECB
is the return code for the service. Post_on_Receipt posts the ECB with a
completion code of 0 when information is available. You can then determine what
this information is by calling either the Receive_and_Wait or Receive_Immediate
services. These services return the following information about the specified
conversation:

v There is a complete logical record is available to be received from the partner
program (see the Data_received parameter returned by Receive_and_Wait or
Receive_Immediate).

v There is a change in conversation status, to one of the following (as shown in the
Status_received parameter returned by Receive_and_Wait or
Receive_Immediate):
– Send_received
– Confirm_received
– Confirm_send_received
– Confirm_deallocate_received.

Note that Post_on_Receipt does not notify the caller for a Request_To_Send
Received condition.

Post_on_Receipt

Chapter 8. APPC/MVS TP Conversation Callable Services 8-59

v A previous call by the partner program on this conversation caused one of the
following non-zero return codes (indicated in the Return_code parameter of
Receive_and_Wait or Receive_Immediate):

3 - Conversation_type_mismatch
5 - Pip_not_specified_correctly
6 - Security_not_valid
8 - Sync_lvl_not_supported_pgm
9 - TPN_not_recognized
10 - TP_not_available_no_retry
11 - TP_not_available_retry
17 - Deallocated_abend
18 - Deallocated_normal
21 - Program_error_no_trunc
22 - Program_error_purging
23 - Program_error_trunc
26 - Resource_failure_no_retry
27 - Resource_failure_retry
30 - Deallocated_abend_SVC
31 - Deallocated_abend_timer
32 - SVC_error_no_trunc
33 - SVC_error_purging
34 - SVC_error_trunc

Post_on_Receipt posts the caller’s ECB with a non-zero POST return code if the
service ends unsuccessfully. For example, if the APPC address space is cancelled
before information for the conversation becomes available, Post_on_Receipt posts
the caller’s ECB with a return code of product_specific_error.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller in the

primary address space.

Format

Parameters
Conversation_id

Supplied parameter

CALL ATBPOR2(
Conversation_id,
ECB_address,
Return_code

);

Figure 8-11. ATBPOR2 - Post_on_Receipt

Post_on_Receipt

8-60 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

ECB_address
Supplied parameter
v Type: Address
v Char Set: N/A
v Length: 32 bits

ECB_address specifies the address of a fullword that specifies the address of
the ECB to be posted. The ECB must reside in the caller’s home address
space.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the result of the call. See the next section for
descriptions of return codes that can be returned to a caller of
Post_On_Receipt.

Return Codes
Valid return code values for the Return_code parameter are:

Table 8-13. Return Codes for the Post_on_Receipt Service

Return
Code

Value, Meaning, and Action

0 Value : OK

Meaning : The call completed successfully.

System Action : The system continues processing.

Application Programmer Response : None required.

20 Value : Product_specific_error

Meaning : The system found a product-specific error.

System Action : The system might write symptom records, which describe
the error, to the logrec data set.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format. If
necessary, see “Diagnosing Product-Specific Errors” on page 6-46 for more
information about product-specific errors.

Post_on_Receipt

Chapter 8. APPC/MVS TP Conversation Callable Services 8-61

Table 8-13. Return Codes for the Post_on_Receipt Service (continued)

Return
Code

Value, Meaning, and Action

24 Value : Program_parameter_check

Meaning : The system detected a program parameter check.

System Action : The system returns this return code to the caller of the
APPC service in error.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

25 Value : Program_state_check

Meaning : The local TP called a service while running in a state in which the
call is not valid. The TP should not examine any other returned variables
associated with the call because nothing is placed in those variables.

System Action : The state of the conversation remains unchanged. For a list
of states that are valid for each call, see “Appendix C. APPC/MVS
Conversation State Table” on page C-1.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

Restrictions
When using this service, observe the following restrictions:

v Call Post_on_Receipt only for basic conversations; do not call the service for
mapped conversations. If you call the service for a mapped conversation, the
service returns a return code of program_parameter_check.

v If running in task mode, do not have any enabled unlocked task (EUT) functional
recovery routines (FRRs) established. For more information about EUT FRRs,
see the section on providing recovery in z/OS MVS Programming: Authorized
Assembler Services Guide.

v Call Post_on_Receipt in receive state only. If you call the service in a state other
than Receive state, the service returns a return code of program_state_check.

v Do not call the Post_on_Receipt service when another callable service is
outstanding on the specified conversation. If you call the service while another
service is in effect, Post_on_Receipt returns a return code of
product_specific_error.

Prepare_to_Receive
Equivalent to:
v LU 6.2 (MC_)Prepare_to_Receive
v CPI Prep_To_Receive (CMPTR)

Changes the conversation from Send to Receive state in preparation to receive
data.

Requirements

Authorization: Supervisor state or problem state, any PSW key

Post_on_Receipt

8-62 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
Conversation_id

Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

Prepare_to_receive_type
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Prepare_to_receive_type specifies the type of prepare_to_receive function to be
performed on this call.

Valid values for this parameter are:

Value Meaning

0 Prep_to_receive_sync_level

Specifies to perform the Prepare_to_receive based on the
synchronization level in effect for the conversation:

v If the synchronization level is None, execute the function of the Flush
call and enter Receive state.

v If the synchronization level is Confirm, execute the function of the
Confirm call and if it is successful, enter Receive state.

v If the synchronization level is Syncpt, enter Defer_receive state until
the program issues either a Commit call, or a Confirm or Flush call,

CALL ATBPTR(
Conversation_id,
Prepare_to_receive_type,
Locks,
Notify_type,
Return_code

);

Figure 8-12. ATBPTR - LU 6.2 Prepare_to_Receive

Prepare_to_Receive

Chapter 8. APPC/MVS TP Conversation Callable Services 8-63

for this conversation. Upon successful completion of the Commit,
Confirm, or Flush call, the TP enters Receive state.

1 Prep_to_receive_flush

Specifies to execute the function of the Flush call and enter Receive
state.

2 Prep_to_receive_confirm

Specifies to execute the function of the Confirm call and if it is
successful, enter Receive state.

Locks
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Locks specifies when control is to be returned to the program following
execution of the confirmation function of this call.

This parameter is significant only when the Prepare_to_receive_type parameter
contains a value of Prep_to_receive_confirm, or a value of
Prep_to_receive_sync_level and the synchronization level of the conversation is
confirm or syncpt. Otherwise, this parameter has no meaning and is ignored.

Valid values for this parameter are:

Value Meaning

100 Short

Specifies to return control when an affirmative reply is received, as
follows:

v When the synchronization level is confirm, return control from
execution of this call when a Confirmed reply is received.

101 Long

Specifies to return control when information, such as data, is received
from the partner program following an affirmative reply, as follows:

v When the synchronization level is confirm, return control from
execution of this call when information is received following a
Confirmed reply.

v When the synchronization level is syncpt, immediately return control
from execution of this call; return control from execution of a
subsequent Confirm or Commit call when information is received
following a corresponding Confirmed or Syncpt reply.

Notify_type
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. Programs can request asynchronous processing,
which returns control to the program immediately and later notifies the program
by ECB when the service is complete. The possible types are:

v None

Prepare_to_Receive

8-64 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.

When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the
return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during asynchronous
processing, and the specified ECB is posted when all returned parameters
are set. The completion code field in the ECB contains the return code for
the service.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. In
cases where an error code is returned, the program should not examine any
other returned variable associated with the call as nothing is placed in the
variables.

See the following section for descriptions of return codes that can be returned
to a caller of Prepare_To_Receive.

Return Codes
If the value of the Prepare_to_receive_type parameter contains the value
Prep_to_receive_flush, or it contains the value Prep_to_receive_sync_level and the
synchronization level of the conversation is None, possible values for Return_code
are:

Decimal Value Meaning
0 OK
20 Product_specific_error
24 Program_parameter_check
25 Program_state_check

If the value of the Prepare_to_receive_type parameter contains the value
Prep_to_receive_confirm, or it contains the value Prep_to_receive_sync_level and
the synchronization level of the conversation is Confirm, possible values of
Return_code are:

Decimal Value Meaning
0 OK
3 Conversation_type_mismatch
5 PIP_not_specified_correctly
6 Security_not_valid
8 Sync_lvl_not_supported_pgm
9 TPN_not_recognized

Prepare_to_Receive

Chapter 8. APPC/MVS TP Conversation Callable Services 8-65

10 TP_not_available_no_retry
11 TP_not_available_retry
17 Deallocate_abend
20 Product_specific_error
22 Program_error_purging
24 Program_parameter_check
25 Program_state_check
26 Resource_failure_no_retry
27 Resource_failure_retry
30 Deallocated_abend_SVC
31 Deallocated_abend_timer
33 SVC_error_purging

If the value of the Prepare_to_receive_type parameter contained the value
Prep_to_receive_confirm and the synchronization level of the conversation is
syncpt, possible values of Return_code are:

Decimal Value Meaning
0 OK
3 Conversation_type_mismatch
5 PIP_not_specified_correctly
6 Security_not_valid
8 Sync_lvl_not_supported_pgm
9 TPN_not_recognized
10 TP_not_available_no_retry
11 TP_not_available_retry
17 Deallocate_abend
20 Product_specific_error
22 Program_error_purging
24 Program_parameter_check
25 Program_state_check
26 Resource_failure_no_retry
27 Resource_failure_retry
30 Deallocated_abend_SVC
31 Deallocated_abend_timer
33 SVC_error_purging
100 Take_backout
130 Deallocated_abend_bo
131 Deallocated_abend_svc_bo (basic conversations only)
132 Deallocated_abend_timer_bo (basic conversations only)
133 Resource_failure_no_retry_bo
134 Resource_failure_retry_bo

If the value of the Prepare_to_receive_type parameter contained the value
Prep_to_receive_sync_level and the synchronization level of the conversation is
syncpt, possible values of Return_code are:

Decimal Value Meaning
0 OK
20 Product_specific_error
24 Program_parameter_check
25 Program_state_check

The following table describes all of the possible return codes for
Prepare_To_Receive.

Prepare_to_Receive

8-66 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-14. Return Codes for the Prepare_to_Receive Service

Return
Code

Value, Meaning, and Action

0 Value : OK

Meaning : The call completed successfully.

System Action : If the call specified a Notify_type of ECB, APPC/MVS posts
the ECB specified on the Notify_type parameter when APPC/MVS finishes
processing the call asynchronously.

Application Programmer Response : None required.

3 Value : Conversation_type_mismatch

Meaning : The partner LU rejected an allocate request. The local TP called
the Allocate service and specified a value of Basic_conversation or
Mapped_conversation on the Conversation_type parameter. The partner TP
does not support the respective basic or mapped conversation protocol
boundary.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : When requesting the allocate, change
the Conversation_type parameter to specify a conversation type that the
partner TP supports.

5 Value : PIP_not_specified_correctly

Meaning : The partner LU rejected an allocate request. The partner TP
defined one or more initialization parameter (PIP) variables, which
APPC/MVS does not support.

System Action : The system returns this return code on a call that occurs
after the call to Allocate. The system does not return this code to callers of
the CPI Communications Allocate call.

Application Programmer Response : Ask the partner system programmer to
change the partner TP so it does not expect PIP data from the TP running on
MVS.

6 Value : Security_not_valid

Meaning : The partner LU rejected an allocate request. The specified security
information is not valid.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

Prepare_to_Receive

Chapter 8. APPC/MVS TP Conversation Callable Services 8-67

Table 8-14. Return Codes for the Prepare_to_Receive Service (continued)

Return
Code

Value, Meaning, and Action

8 Value : Sync_lvl_not_supported_pgm

Meaning : The partner LU rejected an allocate request. The local TP specified
a synchronization level (on the Sync_level parameter) that the partner TP
does not support.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See “Allocate” on page 8-1 for an
explanation of the Sync_level parameter. When requesting the allocate,
ensure that the Sync_level parameter specifies a correct value.

9 Value : TPN_not_recognized

Meaning : The partner LU rejected an allocate request. The local TP specified
a partner TP that the partner LU does not recognize.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See the application programmer
response for return code six for this service.

10 Value : TP_not_available_no_retry

Meaning : The partner LU rejected an Allocate request. The local TP specified
a partner TP that is known to the partner LU, but the partner LU cannot start
the TP. The condition is not temporary. The TP should not retry the Allocate
request.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See the application programmer
response for return code six for this service.

11 Value : TP_not_available_retry

Meaning : The partner LU rejected an allocate request. The local TP specified
a partner TP that the partner LU recognizes but cannot start. The condition
might be temporary.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : Retry the Allocate request. If the error
persists, see “Chapter 6. Diagnosing Problems with APPC/MVS TPs” on
page 6-1 for methods to use to diagnose the return code. See “Error_Extract”
on page 8-34 for the Error_Extract calling format.

Prepare_to_Receive

8-68 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-14. Return Codes for the Prepare_to_Receive Service (continued)

Return
Code

Value, Meaning, and Action

17 Value : Deallocate_abend

Meaning : A partner TP called the Deallocate service. The request specified a
Deallocate_type of Deallocate_abend.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges information sent by the local TP that was not
received by the partner TP. The system returns this return code to the local
TP when it calls an APPC service in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

20 Value : Product_specific_error

Meaning : The system found a product-specific error.

System Action : The system might write symptom records, which describe
the error, to the logrec data set.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format. If
necessary, see “Diagnosing Product-Specific Errors” on page 6-46 for more
information about product-specific errors.

22 Value : Program_error_purging

Meaning : A partner TP called the Send_Error service for a basic or mapped
conversation. The conversation for the partner TP was in Receive or Confirm
state.

System Action : The system returns this return code to the local TP when it
calls an APPC service before sending any information. If the TP called
Send_Error while in Receive state and before it received all the information
that the partner TP sent, the system might purge the data. If the TP called
Send_Error while in Receive or Confirm state but after it received all the
information that the partner TP sent, the system does not purge the data.

Application Programmer Response : See the application programmer
response for return code six for this service.

24 Value : Program_parameter_check

Meaning : The system detected a program parameter check.

System Action : The system returns this return code to the caller of the
APPC service in error.

Application Programmer Response : See the application programmer
response for return code six for this service.

Prepare_to_Receive

Chapter 8. APPC/MVS TP Conversation Callable Services 8-69

Table 8-14. Return Codes for the Prepare_to_Receive Service (continued)

Return
Code

Value, Meaning, and Action

25 Value : Program_state_check

Meaning : The local TP called a service while running in a state in which the
call is not valid. The TP should not examine any other returned variables
associated with the call because nothing is placed in those variables.

System Action : The state of the conversation remains unchanged. For a list
of states that are valid for each call, see “Appendix C. APPC/MVS
Conversation State Table” on page C-1. The conversation was in send state
and the TP started, but the TP did not finish sending a logical record.

Application Programmer Response : See the application programmer
response for return code six for this service.

26 Value : Resource_failure_no_retry

Meaning : An error caused the conversation to terminate. The condition is not
temporary. The application should not try to run the transaction until the
condition is corrected.

System Action : The system terminates the conversation.

Application Programmer Response : See the application programmer
response for return code six for this service.

27 Value : Resource_failure_retry

Meaning : An error caused the conversation to terminate. The condition might
be temporary.

System Action : The system terminates the conversation.

Application Programmer Response : Retry the transaction.

30 Value : Deallocated_abend_SVC

Meaning : The partner TP called Deallocate with a Deallocate_type of
Deallocate_abend_SVC.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

31 Value : Deallocated_abend_timer

Meaning : A partner TP called the Deallocate service with a Deallocate_type
of Deallocate_abend_timer.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

Prepare_to_Receive

8-70 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-14. Return Codes for the Prepare_to_Receive Service (continued)

Return
Code

Value, Meaning, and Action

33 Value : SVC_error_purging

Meaning : A partner TP called the Send_Error service, and LU services on
the partner LU specified a value of SVC for the type of call. The conversation
for the partner TP was in Receive or Confirm state, and the call might have
caused information to be purged.

System Action : The system normally returns this code to the local TP after
the system sends some information to the partner TP. However, the system
can also return this code to the local TP before it sends any information.

Application Programmer Response : See the application programmer
response for return code six for this service.

100 Value : Take_backout

Meaning : This value is returned only when all of the following conditions are
true:

v The Sync_level is set to syncpt.

v The conversation is not in Initialize state.

v The program is using protected resources that must be backed out.

System Action : The system returns this return code to the caller of the
service.

Application Programmer Response : Before it can use this conversation or
any other protected conversations associated with the current context again,
the local TP must issue a Backout call to restore all protected resources to
their status as of the last synchronization point.

130 Value : Deallocated_abend_bo Meaning : This return code is returned only for
conversations with Sync_level set to syncpt.

The partner program issued a Deallocate call with Deallocate_type set to
deallocate_abend, or the partner LU has done so because of a partner
program abnormal-end condition.

System Action : If the conversation for the partner program was in Receive
state when the call was issued, information sent by the local program and not
yet received by the partner program is purged. The conversation is now in
Reset state.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

Prepare_to_Receive

Chapter 8. APPC/MVS TP Conversation Callable Services 8-71

Table 8-14. Return Codes for the Prepare_to_Receive Service (continued)

Return
Code

Value, Meaning, and Action

131 Value : Deallocated_abend_SVC_bo Meaning : This return code is returned
only for conversations with Sync_level set to syncpt.

The partner TP called Deallocate with a Deallocate_type of
deallocate_abend_SVC.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

132 Value : Deallocated_abend_timer_bo Meaning : This return code is returned
only for conversations with Sync_level set to syncpt.

A partner TP called the Deallocate service with a Deallocate_type of
deallocate_abend_timer.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

133 Value : Resource_failure_no_retry_bo Meaning : This return code is returned
only for conversations with Sync_level set to syncpt.

An error caused the conversation to terminate. The condition is not
temporary. The application should not try to run the transaction until the
condition is corrected.

System Action : The system terminates the conversation.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

134 Value : Resource_failure_retry_bo Meaning : This return code is returned only
for conversations with Sync_level set to syncpt.

An error caused the conversation to terminate. The condition might be
temporary.

System Action : The system terminates the conversation.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

Prepare_to_Receive

8-72 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Restrictions
Transaction programs that call the Prepare_to_Receive service while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

Receive_Immediate
Equivalent to:
v LU 6.2 (MC_)Receive_Immediate
v CPI Receive (CMRCV)

Receives any information that is available on the specified conversation but does
not wait for information to arrive. Control is returned to the program with an
indication of whether any information was received and, if so, the type of
information.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space, except for the buffer parameter.

Format

Parameters
Conversation_id

Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

CALL ATBRCVI(
Conversation_id,
Fill,
Receive_length,
Access_token,
Buffer,
Status_received,
Data_received,
Request_to_send_received,
Return_code

);

Figure 8-13. ATBRCVI - LU 6.2 Receive_Immediate

Prepare_to_Receive

Chapter 8. APPC/MVS TP Conversation Callable Services 8-73

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

Fill
Supplied
v Type: Integer
v Char Set: N/A
v Length: 32 bits

In a basic conversation, specifies whether the program is to receive data in
terms of the logical record format of the data.

Valid values for this parameter are:

Value Meaning

0 LL

Specifies the program is to receive one logical record, or whatever
portion of the logical record that is available, up to the length specified.

1 Buffer

Specifies the program is to receive data independent of its logical
record format, up to the length specified.

This parameter has no effect on a mapped conversation, but must contain a
valid value.

Receive_length
Supplied/Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Receive_length specifies the maximum amount of data that the program is to
receive. When control is returned to the program, this parameter contains the
actual amount of data that the program received up to the maximum. If the
program receives information other than data (that is, a control signal), this
parameter remains unchanged.

No value is returned in Receive_length if Data_received is not returned to the
program or if Data_received indicates No_data_received.

Access_token
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Access_token specifies the access list entry token (ALET) of the address space
or data space in which the buffer resides for Receive_immediate calls.

APPC/MVS always uses access_token together with the address of the buffer
to resolve addressing to the transaction program’s data. To specify that the
buffer address passed should not be ALET qualified, an Access_token value of
zero should be supplied. APPC/MVS will then consider the buffer to reside in
the primary address space of the caller.

The Access_token can:

Receive_Immediate

8-74 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v Represent an entry on the dispatchable unit access list (DU-AL)

v Represent an entry on the caller’s primary address access list (PASN-AL),
only if the entry points to a SCOPE=COMMON data space.

The Access_token cannot:

v Be the value 1 (which indicates “secondary ASID”)

v Represent an entry on the caller’s PASN-AL that does not point to a
SCOPE=COMMON data space.

For more information about ALETs for SCOPE=COMMON data spaces, see
“Features of the MVS-Specific Services” on page 2-14.

Buffer
Returned parameter
v Type: Character string
v Char Set: No restriction
v Length: 0-2,147,483,647 bytes

Buffer specifies the buffer that is to contain the data to be received. The call
supplies the buffer that is to contain the data. APPC/MVS returns the data in
the supplied buffer. This data can consist entirely of data (for mapped
conversations) or logical records (for basic conversations).

If the data consists of logical records, each such record consists of a two-byte
length field followed by a data field; the length of the data field can range from
zero to 32,765 bytes. The length of the record includes the two-byte length field;
therefore, logical-record length values of X'0000', X'0001', X'8000', and X'8001'
are not valid.

No value is returned in Buffer if Data_received is not returned to the program or
if Data_received indicates No_data_received.

Status_received
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Status_received specifies what control information was received.

Valid return values for this parameter are:

Value Meaning

0 No_status_received

1 Send_received

Indicates that the partner program has entered Receive state, placing
the local program in Send state. The local program may now issue a
Send_data call.

2 Confirm_received

Indicates that the partner program has issued a confirmation request,
requesting the local program to respond with a Confirmed call. The
program may respond instead by issuing a call other than Confirmed,
such as Send_error.

3 Confirm_send_received

Receive_Immediate

Chapter 8. APPC/MVS TP Conversation Callable Services 8-75

Indicates that the partner program executed the prepare to receive
function with one of the following:

v A type of confirm

v A type of sync_level and the synchronization level is confirm

v A type of sync_level and the synchronization level is syncpt, followed
by a confirmation request.

The local program may respond by issuing a Confirmed call, or by
issuing another call such as Send_error.

4 Confirm_dealloc_received

Indicates the partner program executed the deallocate function with a
type of confirm; or with a type of sync_level and the synchronization
level is confirm. The local program may respond by issuing a Confirmed
call, or by issuing another call such as Send_error.

For a conversation with synchronization level set to syncpt, the following values
are also valid:

Value Meaning

5 Take_syncpt

Indicates that the remote program has issued a syncpoint request,
requesting the local program to respond with a Commit call to commit
all protected resources throughout this transaction. When appropriate,
the local program may respond by issuing a call other than Commit,
such as Backout or Send_Error, which causes the transaction to back
out.

6 Take_syncpt_send

Indicates that the remote program executed the Prepare_To_Receive
function with a Prepare_To_Receive_Type of sync_level and the
synchronization level set to syncpt followed by a syncpoint request,
requesting the local program to respond with a Commit call to commit
all protected resources throughout this transaction. The local program
should respond with a Commit call to commit all protected resources
throughout this transaction. When appropriate, the local program may
respond by issuing a call other than Commit, such as Backout or
Send_Error.

7 Take_syncpt_dealloc

Indicates that the remote program executed the Deallocate function with
a deallocate_type of sync_level and the synchronization level set to
syncpt followed by a syncpoint request, requesting the local program to
respond with a Commit call to commit all protected resources
throughout this transaction. The local program should respond with a
Commit call to commit all protected resources throughout this
transaction and have the conversation deallocated. When appropriate,
the local program may respond by issuing a call other than Commit
such as Backout or Send_Error.

Data_received
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Receive_Immediate

8-76 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Data_received specifies what type of data was received.

Valid return values for this parameter are:

Value Meaning

0 No_data_received

No data was received.

1 Data_received

When the conversation is basic and the value of the Fill parameter was
set to Buffer, this return value indicates that data (independent of its
logical record format) was received.

2 Complete_data_received

v For a basic conversation

When the value of the Fill parameter was set to LL, this return value
indicates that a complete logical record, or the last remaining portion
of it, was received.

v For a mapped conversation

This return value indicates that a complete data record, or the last
remaining portion of it, was received.

3 Incomplete_data_received

v For a basic conversation

When the value of the Fill parameter was set to LL, this return value
indicates that less than a complete logical record was received. The
local program must issue one or more additional receive calls to
receive the remainder of the data.

v For a mapped conversation

This return value indicates that less than a complete data record was
received. The local program must issue one or more additional
receive calls to receive the remainder of the data.

If Return_code indicates any value other than OK or Deallocated_Normal, a
value is not returned in Data_received.

Request_to_send_received
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Request_to_send_received specifies whether or not Request_to_send
notification has been received.

Valid return values for this parameter are:

Value Meaning

0 Request_to_send_not_received

Indicates that Request_to_send notification has not been received

1 Request_to_send_received

The partner program has issued a Request_to_send, requesting the
local program to enter Receive state.

Receive_Immediate

Chapter 8. APPC/MVS TP Conversation Callable Services 8-77

If Return_code indicates Program_parameter_check or Program_state_check, a
value is not returned in Request_to_send_received.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. In
cases where an error code is returned, the program should not examine any
other returned variable associated with the call as nothing is placed in the
variables.

See the following section for descriptions of return codes that can be returned
to a caller of Receive_Immediate.

Return Codes
The following table lists all of the possible return codes for Receive_Immediate:

Table 8-15. Return Codes for the Receive_Immediate Service

Return
Code

Value, Meaning, and Action

0 Value : OK

Meaning : The call completed successfully.

System Action : The system continues processing.

Application Programmer Response : None required.

3 Value : Conversation_type_mismatch

Meaning : The partner LU rejected an allocate request. The local TP called
the Allocate service and specified a value of Basic_conversation or
Mapped_conversation on the Conversation_type parameter. The partner TP
does not support the respective basic or mapped conversation protocol
boundary.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : When requesting the allocate, change
the Conversation_type parameter to specify a conversation type that the
partner TP supports.

5 Value : PIP_not_specified_correctly

Meaning : The partner LU rejected an allocate request. The partner TP
defined one or more initialization parameter (PIP) variables, which
APPC/MVS does not support.

System Action : The system returns this return code on a call that occurs
after the call to Allocate. The system does not return this code to callers of
the CPI Communications Allocate call.

Application Programmer Response : Ask the partner system programmer to
change the partner TP so it does not expect PIP data from the TP running on
MVS.

Receive_Immediate

8-78 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-15. Return Codes for the Receive_Immediate Service (continued)

Return
Code

Value, Meaning, and Action

6 Value : Security_not_valid

Meaning : The partner LU rejected an allocate request. The specified security
information is not valid.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

8 Value : Sync_lvl_not_supported_pgm

Meaning : The partner LU rejected an allocate request. The local TP specified
a synchronization level (on the Sync_level parameter) that the partner TP
does not support.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See “Allocate” on page 8-1 for an
explanation of the Sync_level parameter. When requesting the allocate,
ensure that the Sync_level parameter specifies a correct value.

9 Value : TPN_not_recognized

Meaning : The partner LU rejected an allocate request. The local TP specified
a partner TP that the partner LU does not recognize.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : Ask the partner system programmer to
provide a valid partner TP name. When requesting the allocate, specify the
valid partner TP name.

10 Value : TP_not_available_no_retry

Meaning : The partner LU rejected an Allocate request. The local TP specified
a partner TP that is known to the partner LU, but the partner LU cannot start
the TP. The condition is not temporary. The TP should not retry the Allocate
request.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

Receive_Immediate

Chapter 8. APPC/MVS TP Conversation Callable Services 8-79

Table 8-15. Return Codes for the Receive_Immediate Service (continued)

Return
Code

Value, Meaning, and Action

11 Value : TP_not_available_retry

Meaning : The partner LU rejected an allocate request. The local TP specified
a partner TP that the partner LU recognizes but cannot start. The condition
might be temporary.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : Retry the Allocate request. If the error
persists, see “Chapter 6. Diagnosing Problems with APPC/MVS TPs” on
page 6-1 for methods to use to diagnose the return code. See “Error_Extract”
on page 8-34 for the Error_Extract calling format.

17 Value : Deallocate_abend

Meaning : A partner TP called the Deallocate service. The request specified a
Deallocate_type of Deallocate_abend.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges information sent by the local TP that was not
received by the partner TP. The system returns this return code to the local
TP when it calls an APPC service in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

18 Value : Deallocate_normal

Meaning : A partner TP called the Deallocate service for a basic or mapped
conversation. The request specified a Deallocate_type of
Deallocate_sync_level or Deallocate_flush.

System Action : The system returns this return code to the local TP when it
calls a service while the conversation is in Receive state.

Application Programmer Response : None required.

20 Value : Product_specific_error

Meaning : The system found a product-specific error.

System Action : The system might write symptom records, which describe
the error, to the logrec data set.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format. If
necessary, see “Diagnosing Product-Specific Errors” on page 6-46 for more
information about product-specific errors.

Receive_Immediate

8-80 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-15. Return Codes for the Receive_Immediate Service (continued)

Return
Code

Value, Meaning, and Action

21 Value : Program_error_no_trunc

Meaning : Indicates one of the following:

v A partner TP called the Send_Error service for a mapped conversation.
The conversation for the local TP was in Send state. No truncation occurs
at the mapped conversation protocol boundary.

v A partner TP called Send_Error for a basic conversation. The conversation
was in Send state. The call did not truncate a logical record. No truncation
occurs at the basic conversation protocol boundary when a TP calls
Send_Error either before sending any logical records or after sending a
complete logical record.

System Action : The system returns this return code to the local TP when it
calls the Receive service, before the TP receives any data records or after it
receives one or more data records.

Application Programmer Response : See the application programmer
response for return code six for this service.

22 Value : Program_error_purging

Meaning : A partner TP called the Send_Error service for a basic or mapped
conversation. The conversation for the partner TP was in Receive or Confirm
state.

System Action : The system returns this return code to the local TP when it
calls an APPC service before sending any information. If the TP called
Send_Error while in Receive state and before it received all the information
that the partner TP sent, the system might purge the data. If the TP called
Send_Error while in Receive or Confirm state but after it received all the
information that the partner TP sent, the system does not purge the data.

Application Programmer Response : See the application programmer
response for return code six for this service.

23 Value : Program_error_trunc

Meaning : The partner TP called the Send_Error service for a basic
conversation. The conversation for the partner TP was in Send state, and the
call truncated a logical record. Truncation occurs at the basic conversation
protocol boundary when a TP begins sending a logical record and then
makes a Send_error call before sending the complete logical record.

System Action : The system returns this return code to the local TP on a
Receive call that occurs after the TP receives the truncated logical record.

Application Programmer Response : See the application programmer
response for return code six for this service.

24 Value : Program_parameter_check

Meaning : The system detected a program parameter check.

System Action : The system returns this return code to the caller of the
APPC service in error.

Application Programmer Response : See the application programmer
response for return code six for this service.

Receive_Immediate

Chapter 8. APPC/MVS TP Conversation Callable Services 8-81

Table 8-15. Return Codes for the Receive_Immediate Service (continued)

Return
Code

Value, Meaning, and Action

25 Value : Program_state_check

Meaning : The local TP called a service while running in a state in which the
call is not valid. The TP should not examine any other returned variables
associated with the call because nothing is placed in those variables.

System Action : The state of the conversation remains unchanged. For a list
of states that are valid for each call, see “Appendix C. APPC/MVS
Conversation State Table” on page C-1. The conversation was in send state
and the TP started, but the TP did not finish sending a logical record.

Application Programmer Response : See the application programmer
response for return code six for this service.

26 Value : Resource_failure_no_retry

Meaning : An error caused the conversation to terminate. The condition is not
temporary. The application should not try to run the transaction until the
condition is corrected.

System Action : The system terminates the conversation.

Application Programmer Response : See the application programmer
response for return code six for this service.

27 Value : Resource_failure_retry

Meaning : An error caused the conversation to terminate. The condition might
be temporary.

System Action : The system terminates the conversation.

Application Programmer Response : Retry the transaction.

28 Value : Unsuccessful

Meaning : No data was available to receive.

System Action : The system returns this return code to the caller of the
APPC service in error.

Application Programmer Response : See the application programmer
response for return code six for this service.

30 Value : Deallocated_abend_SVC

Meaning : The partner TP called Deallocate with a Deallocate_type of
Deallocate_abend_SVC.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

Receive_Immediate

8-82 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-15. Return Codes for the Receive_Immediate Service (continued)

Return
Code

Value, Meaning, and Action

31 Value : Deallocated_abend_timer

Meaning : A partner TP called the Deallocate service with a Deallocate_type
of Deallocate_abend_timer.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

32 Value : SVC_error_no_trunc

Meaning : A partner TP called the Send_Error service, and LU services on
the partner LU specified a value of SVC for the type of call. The conversation
was in Send state, and the call did not truncate a logical record.

System Action : The system returns this return code to the caller of the
Receive service. The system does not return this return code to callers of the
CPI Communications Send_Error call.

Application Programmer Response : See the application programmer
response for return code six for this service.

33 Value : SVC_error_purging

Meaning : A partner TP called the Send_Error service, and LU services on
the partner LU specified a value of SVC for the type of call. The conversation
for the partner TP was in Receive or Confirm state, and the call might have
caused information to be purged.

System Action : The system normally returns this code to the local TP after
the system sends some information to the partner TP. However, the system
can also return this code to the local TP before it sends any information.

Application Programmer Response : See the application programmer
response for return code six for this service.

34 Value : SVC_error_trunc

Meaning : A partner TP called the Send_Error service, and LU services on
the partner LU specified a value of SVC for the type of call. The conversation
for the partner TP was in send state, and the call truncated a logical record.
Truncation occurs when a program begins sending a logical record and calls
the Send_Error service before the complete record is sent.

System Action : The system returns this return code when the local TP calls
the Receive service to receive the truncated logical record.

Application Programmer Response : See the application programmer
response for return code six for this service.

Receive_Immediate

Chapter 8. APPC/MVS TP Conversation Callable Services 8-83

Table 8-15. Return Codes for the Receive_Immediate Service (continued)

Return
Code

Value, Meaning, and Action

100 Value : Take_backout

Meaning : This value is returned only when all of the following conditions are
true:

v The Sync_level is set to syncpt.

v The conversation is not in Initialize state.

v The program is using protected resources that must be backed out.

System Action : The system returns this return code to the caller of the
service.

Application Programmer Response : Before it can use this conversation or
any other protected conversations associated with the current context again,
the local TP must issue a Backout call to restore all protected resources to
their status as of the last synchronization point.

130 Value : Deallocated_abend_bo Meaning : This return code is returned only for
conversations with Sync_level set to syncpt.

The partner program issued a Deallocate call with Deallocate_type set to
deallocate_abend, or the partner LU has done so because of a partner
program abnormal-end condition.

System Action : If the conversation for the partner program was in Receive
state when the call was issued, information sent by the local program and not
yet received by the partner program is purged. The conversation is now in
Reset state.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

131 Value : Deallocated_abend_SVC_bo Meaning : This return code is returned
only for conversations with Sync_level set to syncpt.

The partner TP called Deallocate with a Deallocate_type of
deallocate_abend_SVC.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

Receive_Immediate

8-84 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-15. Return Codes for the Receive_Immediate Service (continued)

Return
Code

Value, Meaning, and Action

132 Value : Deallocated_abend_timer_bo Meaning : This return code is returned
only for conversations with Sync_level set to syncpt.

A partner TP called the Deallocate service with a Deallocate_type of
deallocate_abend_timer.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

133 Value : Resource_failure_no_retry_bo Meaning : This return code is returned
only for conversations with Sync_level set to syncpt.

An error caused the conversation to terminate. The condition is not
temporary. The application should not try to run the transaction until the
condition is corrected.

System Action : The system terminates the conversation.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

134 Value : Resource_failure_retry_bo Meaning : This return code is returned only
for conversations with Sync_level set to syncpt.

An error caused the conversation to terminate. The condition might be
temporary.

System Action : The system terminates the conversation.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

Restrictions
Transaction programs that call the Receive_Immediate service while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

Receive_and_Wait
Equivalent to:
v LU 6.2 (MC_)Receive_and_Wait
v CPI Receive (CMRCV)

Receive_Immediate

Chapter 8. APPC/MVS TP Conversation Callable Services 8-85

Waits for information to arrive on the conversation and then receives the
information. If information is already available, the program receives it without
waiting.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space, except for the buffer parameter.

Format

Parameters
Conversation_id

Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

Fill
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

In a basic conversation, specifies whether the program is to receive data in
terms of the logical record format of the data.

Valid values for this parameter are:

Value Meaning

CALL ATBRCVW(
Conversation_id,
Fill,
Receive_length,
Access_token,
Buffer,
Status_received,
Data_received,
Request_to_send_received,
Notify_type,
Return_code

);

Figure 8-14. ATBRCVW - LU 6.2 Receive and Wait

Receive_and_Wait

8-86 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

0 LL

specifies the program is to receive one logical record, or whatever
portion of the logical record that is available, up to the length specified.

1 Buffer

specifies the program is to receive data independent of its logical record
format, up to the length specified.

This parameter has no effect on a mapped conversation, but must contain a
valid value.

Receive_length
Supplied/Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Receive_length specifies the maximum amount of data that the program is to
receive. When control is returned to the program, this parameter contains the
actual amount of data that the program received up to the maximum. If the
program receives information other than data (that is, a control signal), this
parameter remains unchanged.

No value is returned in Receive_length if Data_received is not returned to the
program or if Data_received indicates No_data_received.

Access_token
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Access_token specifies the Access List Entry Token (ALET) of the address
space or data space in which the buffer resides for Receive_and_wait.

APPC/MVS always uses access_token in conjunction with the address of the
buffer in order to resolve addressing to the transaction program’s data. To
specify that the buffer address passed should not be ALET qualified, an
Access_token value of zero should be supplied. APPC/MVS will then consider
the buffer to reside in the primary address space of the caller.

The Access_token can:

v Represent an entry on the dispatchable unit access list (DU-AL)

v Represent an entry on the caller’s primary address access list (PASN-AL),
only if the entry points to a SCOPE=COMMON data space.

The Access_token cannot:

v Be the value 1 (which indicates “secondary ASID”)

v Represent an entry on the caller’s PASN-AL that does not point to a
SCOPE=COMMON data space.

For more information about ALETs for SCOPE=COMMON data spaces, see
“Features of the MVS-Specific Services” on page 2-14.

Buffer
Returned parameter

Receive_and_Wait

Chapter 8. APPC/MVS TP Conversation Callable Services 8-87

v Type: Character string
v Char Set: No restriction
v Length: 0-2,147,483,647 bytes

Buffer specifies the buffer that is to contain the data to be received. The call
supplies the buffer that is to contain the data. APPC/MVS returns the data in
the supplied buffer. This data can consist entirely of data (for mapped
conversations) or logical records (for basic conversations).

If the data consists of logical records, each such record consists of a two-byte
length field followed by a data field; the length of the data field can range from
zero to 32,765 bytes. The length of the record includes the two-byte length field;
therefore, logical-record length values of X'0000', X'0001', X'8000', and X'8001'
are not valid.

No value is returned in Buffer if Data_received is not returned to the program or
if Data_received indicates No_data_received.

Status_received
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Status_received specifies what control information was received.

Valid return values for this parameter are:

Value Meaning

0 No_status_received

1 Send_received

Indicates that the partner program has entered Receive state, placing
the local program in Send state. The local program may now issue a
Send_data call.

2 Confirm_received

Indicates that the partner program has issued a confirmation request,
requesting the local program to respond with a Confirmed call. The
program may respond instead by issuing a call other than Confirmed,
such as Send_error.

3 Confirm_send_received

Indicates that the partner program executed the prepare to receive
function with one of the following:

v A type of confirm

v A type of sync_level and the synchronization level is confirm

v A type of sync_level and the synchronization level is syncpt, followed
by a confirmation request.

The local program may respond by issuing a Confirmed call, or by
issuing another call such as Send_error.

4 Confirm_dealloc_received

Indicates the partner program executed the deallocate function with a
type of confirm; or with a type of sync_level and the synchronization

Receive_and_Wait

8-88 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

level is confirm. The local program may respond by issuing a Confirmed
call, or by issuing another call such as Send_error.

For a conversation with synchronization level set to syncpt, the
following values are also valid:

Value Meaning

5 Take_syncpt

Indicates that the remote program has issued a syncpoint
request, requesting the local program to respond with a Commit
call to commit all protected resources throughout this
transaction. When appropriate, the local program may respond
by issuing a call other than Commit, such as Backout or
Send_Error, which causes the transaction to back out.

6 Take_syncpt_send

Indicates that the remote program executed the
Prepare_To_Receive function with a Prepare_To_Receive_Type
of sync_level and the synchronization level set to syncpt
followed by a syncpoint request, requesting the local program to
respond with a Commit call to commit all protected resources
throughout this transaction. The local program should respond
with a Commit call to commit all protected resources throughout
this transaction. When appropriate, the local program may
respond by issuing a call other than Commit, such as Backout
or Send_Error.

7 Take_syncpt_dealloc

Indicates that the remote program executed the Deallocate
function with a deallocate_type of sync_level and the
synchronization level set to syncpt followed by a syncpoint
request, requesting the local program to respond with a Commit
call to commit all protected resources throughout this
transaction. The local program should respond with a Commit
call to commit all protected resources throughout this
transaction and have the conversation deallocated. When
appropriate, the local program may respond by issuing a call
other than Commit such as Backout or Send_Error.

Data_received
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Data_received specifies what type of data was received.

Valid return values for this parameter are:

Value Meaning

0 No_data_received

No data was received

1 Data_received

Receive_and_Wait

Chapter 8. APPC/MVS TP Conversation Callable Services 8-89

When the conversation is basic and the value of the Fill parameter was
set to Buffer, this return value indicates that data (independent of its
logical record format) was received.

2 Complete_data_received

v For a basic conversation

When the value of the Fill parameter was set to LL, this return value
indicates that a complete logical record, or the last remaining portion
thereof, was received.

v For a mapped conversation

This return value indicates that a complete data record, or the last
remaining portion thereof, was received.

3 Incomplete_data_received

v For a basic conversation

When the value of the Fill parameter was set to LL, this return value
indicates that less than a complete logical record was received. The
local program must issue one or more additional receive calls to
receive the remainder of the data.

v For a mapped conversation

This return value indicates that less than a complete data record was
received. The local program must issue one or more additional
receive calls to receive the remainder of the data.

If Return_code indicates any value other than OK or Deallocated_Normal, a
value is not returned in Data_received.

Request_to_send_received
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Request_to_send_received specifies whether or not Request_to_send
notification has been received.

Valid return values for this parameter are:

Value Meaning

0 Request_to_send_not_received

Indicates that Request_to_send notification has not been received

1 Request_to_send_received

Indicates that the partner program has issued a Request_to_send,
requesting the local program to enter Receive state.

If Return_code indicates Program_parameter_check or Program_state_check, a
value is not returned in Request_to_send_received.

Notify_type
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 4-8 bytes

Receive_and_Wait

8-90 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. Programs can request asynchronous processing,
which returns control to the program immediately and later notifies the program
by ECB when the service is complete. The possible types are:

v None

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.

When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the
return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during asynchronous
processing, and the specified ECB is posted when all returned parameters
are set. The completion code field in the ECB contains the return code for
the service.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. In
cases where an error code is returned, the program should not examine any
other returned variable associated with the call as nothing is placed in the
variables.

See the following section for descriptions of return codes that can be returned
to a caller of Receive_and_Wait.

Return Codes
If Receive_and_Wait is called in Send state, possible values of Return_code are:

Decimal Value Meaning
0 OK
3 Conversation_type_mismatch
5 PIP_not_specified_correctly
6 Security_not_valid
8 Sync_lvl_not_supported_pgm
9 TPN_not_recognized
10 TP_not_available_no_retry
11 TP_not_available_retry
17 Deallocated_abend
18 Deallocated_normal
20 Product_specific_error
21 Program_error_no_trunc
22 Program_error_purging
24 Program_parameter_check

Receive_and_Wait

Chapter 8. APPC/MVS TP Conversation Callable Services 8-91

25 Program_state_check
26 Resource_failure_no_retry
27 Resource_failure_retry
30 Deallocated_abend_svc
31 Deallocated_abend_timer
32 SVC_error_no_trunc
33 SVC_error_purging
100 Take_backout
130 Deallocated_abend_bo
131 Deallocated_abend_svc_bo (basic conversations only)
132 Deallocated_abend_timer_bo (basic conversations only)
133 Resource_failure_no_retry_bo
134 Resource_failure_retry_bo

Note: Return codes 100 through 134 are possible values only for conversations
with a synchronization level of syncpt.

If Receive_and_Wait is called in Send-pending state, possible values of
Return_code are:

Decimal Value Meaning
0 OK
17 Deallocated_abend
18 Deallocated_normal
20 Product_specific_error
21 Program_error_no_trunc
22 Program_error_purging
24 Program_parameter_check
25 Program_state_check
26 Resource_failure_no_retry
27 Resource_failure_retry
30 Deallocated_abend_svc
31 Deallocated_abend_timer
32 SVC_error_no_trunc
33 SVC_error_purging
100 Take_backout
130 Deallocated_abend_bo
131 Deallocated_abend_svc_bo (basic conversations only)
132 Deallocated_abend_timer_bo (basic conversations only)
133 Resource_failure_no_retry_bo
134 Resource_failure_retry_bo

Note: Return codes 100 through 134 are possible values only for conversations
with a synchronization level of syncpt.

If Receive_and_Wait is called in Receive state, possible values of Return_code are:

Decimal Value Meaning
0 OK
3 Conversation_type_mismatch
5 PIP_not_specified_correctly
6 Security_not_valid
8 Sync_lvl_not_supported_pgm
9 TPN_not_recognized
10 TP_not_available_no_retry
11 TP_not_available_retry
17 Deallocated_abend

Receive_and_Wait

8-92 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

18 Deallocated_normal
20 Product_specific_error
21 Program_error_no_trunc
22 Program_error_purging
23 Program_error_trunc
24 Program_parameter_check
25 Program_state_check
26 Resource_failure_no_retry
27 Resource_failure_retry
30 Deallocated_abend_SVC
31 Deallocated_abend_timer
32 SVC_error_no_trunc
33 SVC_error_purging
34 SVC_error_trunc
100 Take_backout
130 Deallocated_abend_bo
131 Deallocated_abend_svc_bo (basic conversations only)
132 Deallocated_abend_timer_bo (basic conversations only)
133 Resource_failure_no_retry_bo
134 Resource_failure_retry_bo

Note: Return codes 100 through 134 are possible values only for conversations
with a synchronization level of syncpt.

The following table lists all of the possible return codes for Receive_and_Wait:

Table 8-16. Return Codes for the Receive_and_Wait Service

Return
Code

Value, Meaning, and Action

0 Value : OK

Meaning : The call completed successfully.

System Action : If the call specified a Notify_type of ECB, APPC/MVS posts
the ECB specified on the Notify_type parameter when APPC/MVS finishes
processing the call asynchronously.

Application Programmer Response : None required.

3 Value : Conversation_type_mismatch

Meaning : The partner LU rejected an allocate request. The local TP called
the Allocate service and specified a value of Basic_conversation or
Mapped_conversation on the Conversation_type parameter. The partner TP
does not support the respective basic or mapped conversation protocol
boundary.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : When requesting the allocate, change
the Conversation_type parameter to specify a conversation type that the
partner TP supports.

Receive_and_Wait

Chapter 8. APPC/MVS TP Conversation Callable Services 8-93

Table 8-16. Return Codes for the Receive_and_Wait Service (continued)

Return
Code

Value, Meaning, and Action

5 Value : PIP_not_specified_correctly

Meaning : The partner LU rejected an allocate request. The partner TP
defined one or more initialization parameter (PIP) variables, which
APPC/MVS does not support.

System Action : The system returns this return code on a call that occurs
after the call to Allocate. The system does not return this code to callers of
the CPI Communications Allocate call.

Application Programmer Response : Ask the partner system programmer to
change the partner TP so it does not expect PIP data from the TP running on
MVS.

6 Value : Security_not_valid

Meaning : The partner LU rejected an allocate request. The specified security
information is not valid.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

8 Value : Sync_lvl_not_supported_pgm

Meaning : The partner LU rejected an allocate request. The local TP specified
a synchronization level (on the Sync_level parameter) that the partner TP
does not support.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See “Allocate” on page 8-1 for an
explanation of the Sync_level parameter. When requesting the allocate,
ensure that the Sync_level parameter specifies a correct value.

9 Value : TPN_not_recognized

Meaning : The partner LU rejected an allocate request. The local TP specified
a partner TP that the partner LU does not recognize.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : Ask the partner system programmer to
provide a valid partner TP name. When requesting the allocate, specify the
valid partner TP name.

Receive_and_Wait

8-94 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-16. Return Codes for the Receive_and_Wait Service (continued)

Return
Code

Value, Meaning, and Action

10 Value : TP_not_available_no_retry

Meaning : The partner LU rejected an Allocate request. The local TP specified
a partner TP that is known to the partner LU, but the partner LU cannot start
the TP. The condition is not temporary. The TP should not retry the Allocate
request.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

11 Value : TP_not_available_retry

Meaning : The partner LU rejected an allocate request. The local TP specified
a partner TP that the partner LU recognizes but cannot start. The condition
might be temporary.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : Retry the Allocate request. If the error
persists, see “Chapter 6. Diagnosing Problems with APPC/MVS TPs” on
page 6-1 for methods to use to diagnose the return code. See “Error_Extract”
on page 8-34 for the Error_Extract calling format.

17 Value : Deallocate_abend

Meaning : A partner TP called the Deallocate service. The request specified a
Deallocate_type of Deallocate_abend.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges information sent by the local TP that was not
received by the partner TP. The system returns this return code to the local
TP when it calls an APPC service in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

18 Value : Deallocate_normal

Meaning : A partner TP called the Deallocate service for a basic or mapped
conversation. The request specified a Deallocate_type of
Deallocate_sync_level or Deallocate_flush.

System Action : The system returns this return code to the local TP when it
calls a service while the conversation is in Receive state.

Application Programmer Response : None required.

Receive_and_Wait

Chapter 8. APPC/MVS TP Conversation Callable Services 8-95

Table 8-16. Return Codes for the Receive_and_Wait Service (continued)

Return
Code

Value, Meaning, and Action

20 Value : Product_specific_error

Meaning : The system found a product-specific error.

System Action : The system might write symptom records, which describe
the error, to the logrec data set.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format. If
necessary, see “Diagnosing Product-Specific Errors” on page 6-46 for more
information about product-specific errors.

21 Value : Program_error_no_trunc

Meaning : Indicates one of the following:

v A partner TP called the Send_Error service for a mapped conversation.
The conversation for the local TP was in Send state. No truncation occurs
at the mapped conversation protocol boundary.

v A partner TP called Send_Error for a basic conversation. The conversation
was in Send state. The call did not truncate a logical record. No truncation
occurs at the basic conversation protocol boundary when a TP calls
Send_Error either before sending any logical records or after sending a
complete logical record.

System Action : The system returns this return code to the local TP when it
calls the Receive service, before the TP receives any data records or after it
receives one or more data records.

Application Programmer Response : See the application programmer
response for return code six for this service.

22 Value : Program_error_purging

Meaning : A partner TP called the Send_Error service for a basic or mapped
conversation. The conversation for the partner TP was in Receive or Confirm
state.

System Action : The system returns this return code to the local TP when it
calls an APPC service before sending any information. If the TP called
Send_Error while in Receive state and before it received all the information
that the partner TP sent, the system might purge the data. If the TP called
Send_Error while in Receive or Confirm state but after it received all the
information that the partner TP sent, the system does not purge the data.

Application Programmer Response : See the application programmer
response for return code six for this service.

Receive_and_Wait

8-96 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-16. Return Codes for the Receive_and_Wait Service (continued)

Return
Code

Value, Meaning, and Action

23 Value : Program_error_trunc

Meaning : The partner TP called the Send_Error service for a basic
conversation. The conversation for the partner TP was in Send state, and the
call truncated a logical record. Truncation occurs at the basic conversation
protocol boundary when a TP begins sending a logical record and then
makes a Send_error call before sending the complete logical record.

System Action : The system returns this return code to the local TP on a
Receive call that occurs after the TP receives the truncated logical record.

Application Programmer Response : See the application programmer
response for return code six for this service.

24 Value : Program_parameter_check

Meaning : The system detected a program parameter check.

System Action : The system returns this return code to the caller of the
APPC service in error.

Application Programmer Response : See the application programmer
response for return code six for this service.

25 Value : Program_state_check

Meaning : The local TP called a service while running in a state in which the
call is not valid. The TP should not examine any other returned variables
associated with the call because nothing is placed in those variables.

System Action : The state of the conversation remains unchanged. For a list
of states that are valid for each call, see “Appendix C. APPC/MVS
Conversation State Table” on page C-1. The conversation was in send state
and the TP started, but the TP did not finish sending a logical record.

Application Programmer Response : See the application programmer
response for return code six for this service.

26 Value : Resource_failure_no_retry

Meaning : An error caused the conversation to terminate. The condition is not
temporary. The application should not try to run the transaction until the
condition is corrected.

System Action : The system terminates the conversation.

Application Programmer Response : See the application programmer
response for return code six for this service.

27 Value : Resource_failure_retry

Meaning : An error caused the conversation to terminate. The condition might
be temporary.

System Action : The system terminates the conversation.

Application Programmer Response : Retry the transaction.

Receive_and_Wait

Chapter 8. APPC/MVS TP Conversation Callable Services 8-97

Table 8-16. Return Codes for the Receive_and_Wait Service (continued)

Return
Code

Value, Meaning, and Action

30 Value : Deallocated_abend_SVC

Meaning : The partner TP called Deallocate with a Deallocate_type of
Deallocate_abend_SVC.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

31 Value : Deallocated_abend_timer

Meaning : A partner TP called the Deallocate service with a Deallocate_type
of Deallocate_abend_timer.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

32 Value : SVC_error_no_trunc

Meaning : A partner TP called the Send_Error service, and LU services on
the partner LU specified a value of SVC for the type of call. The conversation
was in Send state, and the call did not truncate a logical record.

System Action : The system returns this return code to the caller of the
Receive service. The system does not return this return code to callers of the
CPI Communications Send_Error call.

Application Programmer Response : See the application programmer
response for return code six for this service.

33 Value : SVC_error_purging

Meaning : A partner TP called the Send_Error service, and LU services on
the partner LU specified a value of SVC for the type of call. The conversation
for the partner TP was in Receive or Confirm state, and the call might have
caused information to be purged.

System Action : The system normally returns this code to the local TP after
the system sends some information to the partner TP. However, the system
can also return this code to the local TP before it sends any information.

Application Programmer Response : See the application programmer
response for return code six for this service.

Receive_and_Wait

8-98 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-16. Return Codes for the Receive_and_Wait Service (continued)

Return
Code

Value, Meaning, and Action

34 Value : SVC_error_trunc

Meaning : A partner TP called the Send_Error service, and LU services on
the partner LU specified a value of SVC for the type of call. The conversation
for the partner TP was in send state, and the call truncated a logical record.
Truncation occurs when a program begins sending a logical record and calls
the Send_Error service before the complete record is sent.

System Action : The system returns this return code when the local TP calls
the Receive service to receive the truncated logical record.

Application Programmer Response : See the application programmer
response for return code six for this service.

100 Value : Take_backout

Meaning : This value is returned only when all of the following conditions are
true:

v The Sync_level is set to syncpt.

v The conversation is not in Initialize state.

v The program is using protected resources that must be backed out.

System Action : The system returns this return code to the caller of the
service.

Application Programmer Response : Before it can use this conversation or
any other protected conversations associated with the current context again,
the local TP must issue a Backout call to restore all protected resources to
their status as of the last synchronization point.

130 Value : Deallocated_abend_bo

Meaning : This value is returned only when all of the following conditions are
true:

v The Sync_level is set to syncpt.

v The conversation is not in Initialize state.

v The program is using protected resources that must be backed out.

System Action : The system returns this return code to the caller of the
service.

Application Programmer Response : Before it can use this conversation or
any other protected conversations associated with the current context again,
the local TP must issue a Backout call to restore all protected resources to
their status as of the last synchronization point.

Receive_and_Wait

Chapter 8. APPC/MVS TP Conversation Callable Services 8-99

Table 8-16. Return Codes for the Receive_and_Wait Service (continued)

Return
Code

Value, Meaning, and Action

131 Value : Deallocated_abend_SVC_bo) Meaning : This return code is returned
only for conversations with Sync_level set to syncpt.

The partner TP called Deallocate with a Deallocate_type of
deallocate_abend_SVC.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

132 Value : Deallocated_abend_timer_bo Meaning : This return code is returned
only for conversations with Sync_level set to syncpt.

A partner TP called the Deallocate service with a Deallocate_type of
deallocate_abend_timer.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

133 Value : Resource_failure_no_retry_bo Meaning : This return code is returned
only for conversations with Sync_level set to syncpt.

An error caused the conversation to terminate. The condition is not
temporary. The application should not try to run the transaction until the
condition is corrected.

System Action : The system terminates the conversation.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

134 Value : Resource_failure_retry_bo Meaning : This return code is returned only
for conversations with Sync_level set to syncpt.

An error caused the conversation to terminate. The condition might be
temporary.

System Action : The system terminates the conversation.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

Receive_and_Wait

8-100 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Restrictions
Transaction programs that call the Receive_and_Wait service while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

Request_to_Send
Equivalent to:
v LU 6.2 (MC_)Request_to_Send
v CPI Req_to_Send (CMRTS)

Notifies the partner program that the local program is requesting to enter Send state
for the conversation. The conversation will be changed to Send state when the local
program subsequently receives a send indication from the partner program.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
Conversation_id

Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

Notify_type
Supplied parameter
v Type: Structure
v Char Set: N/A

CALL ATBRTS(
Conversation_id,
Notify_type,
Return_code

);

Figure 8-15. ATBRTS - LU 6.2 Request to Send

Receive_and_Wait

Chapter 8. APPC/MVS TP Conversation Callable Services 8-101

v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. Programs can request asynchronous processing,
which returns control to the program immediately and later notifies the program
by ECB when the service is complete. The possible types are:

v None

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.

When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the
return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during asynchronous
processing, and the specified ECB is posted when all returned parameters
are set. The completion code field in the ECB contains the return code for
the service.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. In
cases where an error code is returned, the program should not examine any
other returned variable associated with the call as nothing is placed in the
variables.

See the following section for descriptions of return codes that can be returned
to a caller of Request_To_Send.

Return Codes
Valid return code values for the Return_code parameter are:

Table 8-17. Return Codes for the Request_to_Send Service

Return
Code

Value, Meaning, and Action

0 Value : OK

Meaning : The call completed successfully.

System Action : If the call specified a Notify_type of ECB, APPC/MVS posts
the ECB specified on the Notify_type parameter when APPC/MVS finishes
processing the call asynchronously.

Application Programmer Response : None required.

Request_to_Send

8-102 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-17. Return Codes for the Request_to_Send Service (continued)

Return
Code

Value, Meaning, and Action

20 Value : Product_specific_error

Meaning : The system found a product-specific error.

System Action : The system might write symptom records, which describe
the error, to the logrec data set.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format. If
necessary, see “Diagnosing Product-Specific Errors” on page 6-46 for more
information about product-specific errors.

24 Value : Program_parameter_check

Meaning : The system detected a program parameter check.

System Action : The system returns this return code to the caller of the
APPC service in error.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

25 Value : Program_state_check

Meaning : The Sync_level is set to syncpt, and the TP is in the
Backout-required state.

System Action : The state of the conversation remains unchanged. For a list
of states that are valid for each call, see “Appendix C. APPC/MVS
Conversation State Table” on page C-1. The conversation was in send state
and the TP started, but the TP did not finish sending a logical record.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

Restrictions
Transaction programs that call the Request_to_Send service while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

Send_Data
Equivalent to:
v LU 6.2 (MC_)Send_Data
v CPI Send_Data (CMSEND)

Sends data to a partner program.

Requirements

Authorization: Supervisor state or problem state, any PSW key

Request_to_Send

Chapter 8. APPC/MVS TP Conversation Callable Services 8-103

Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space, except for the buffer parameter.

Format

Parameters
Conversation_id

Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

Send_type
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Send_type specifies what, if any, information is to be sent to the partner
program in addition to the data supplied. Send_type also lets you combine
operations (for example, Send_and_confirm) and save extra calls to APPC.

Valid values for this parameter are:

Value Meaning

0 Buffer_data

Specifies that no additional information is to be sent to the partner
program, and the data may be buffered until a sufficient quantity is
accumulated.

1 Send_and_flush

CALL ATBSEND(
Conversation_id,
Send_type,
Send_length,
Access_token,
Buffer,
Request_to_send_received,
Notify_type,
Return_code

);

Figure 8-16. ATBSEND - LU 6.2 Send Data

Send_Data

8-104 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Specifies that no additional information is to be sent to the partner
program. However, the supplied data is sent immediately rather than
buffered. This is functionally equivalent to a Send_data call with the
Send_type parameter set to Buffer_data followed by a Flush call.

2 Send_and_confirm

Specifies that the supplied data is to be sent to the partner program
immediately, along with a request for confirmation. This is functionally
equivalent to a Send_data call with the Send_type parameter set to
Buffer_data followed by a Confirm call.

3 Send_and_prepare_to_receive

Specifies that the supplied data is to be sent to the partner program
immediately, along with send control of the conversation. This is
functionally equivalent to a Send_data call with the Send_type
parameter set to Buffer_data followed by a Prepare_to_receive call with
the prepare_to_receive_type set to sync_level and the locks parameter
set to short.

4 Send_and_deallocate

Specifies that the supplied data is to be sent to the partner program
immediately, along with a deallocation notification. This is functionally
equivalent to a Send_data call with the Send_type parameter set to
Buffer_data followed by a Deallocate call with the deallocate_type set to
sync_level.

Send_length
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Send_length specifies the length of the data to be sent. This data length is not
related in any way to the length of the logical record. It is used only to
determine the length of the data contained in the Buffer parameter.

If Send_length is zero, no data is sent for this call and the Buffer parameter is
not significant.

Access_token
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Access_token specifies the Access List Entry Token (ALET) of the address
space or data space in which the buffer resides for Send_Data calls.

APPC/MVS always uses access_token together with the address of the buffer
to resolve addressing to the transaction program’s data. To specify that the
buffer address passed should not be ALET qualified, an Access_token value of
zero should be supplied. APPC/MVS will then consider the buffer to reside in
the primary address space of the caller.

The Access_token can:

v Represent an entry on the dispatchable unit access list (DU-AL)

Send_Data

Chapter 8. APPC/MVS TP Conversation Callable Services 8-105

v Represent an entry on the caller’s primary address access list (PASN-AL),
only if the entry points to a SCOPE=COMMON data space.

The Access_token cannot:

v Be the value 1 (which indicates “secondary ASID”)

v Represent an entry on the caller’s PASN-AL that does not point to a
SCOPE=COMMON data space.

For more information about ALETs for SCOPE=COMMON data spaces, see
“Features of the MVS-Specific Services” on page 2-14.

Buffer
Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 0-2,147,483,647 bytes

Buffer specifies the data to be sent or received. This data can consist entirely of
data (for mapped conversations) or logical records (for basic conversations).

If the data consists of logical records, each such record consists of a two-byte
length field followed by a data field; the length of the data field can range from
zero to 32,765 bytes. The length of the record includes the two-byte length field;
therefore, logical-record length values of X'0000', X'0001', X'8000', and X'8001'
are not valid.

Request_to_send_received
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Request_to_send_received specifies whether or not Request_to_send
notification has been received.

Valid return values for this parameter are:

Value Meaning

0 Request_to_send_not_received

indicates that Request_to_send notification has not been received

1 Request_to_send_received

the partner program has issued a Request_to_send, requesting the
local program to enter Receive state.

If Return_code indicates Program_parameter_check or Program_state_check, a
value is not returned in Request_to_send_received.

Notify_type
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. Programs can request asynchronous processing,

Send_Data

8-106 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

which returns control to the program immediately and later notifies the program
by ECB when the service is complete. The possible types are:

v None

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.

When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the
return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during asynchronous
processing, and the specified ECB is posted when all returned parameters
are set. The completion code field in the ECB contains the return code for
the service.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. In
cases where an error code is returned, the program should not examine any
other returned variable associated with the call as nothing is placed in the
variables.

See the following section for descriptions of return codes that can be returned
to a caller of Send_Data.

Return Codes
The following table lists all of the possible return codes for Send_Data:

Table 8-18. Return Codes for the Send_Data Service

Return
Code

Value, Meaning, and Action

0 Value : OK

Meaning : The call completed successfully.

System Action : If the call specified a Notify_type of ECB, APPC/MVS posts
the ECB specified on the Notify_type parameter when APPC/MVS finishes
processing the call asynchronously.

Application Programmer Response : None required.

Send_Data

Chapter 8. APPC/MVS TP Conversation Callable Services 8-107

Table 8-18. Return Codes for the Send_Data Service (continued)

Return
Code

Value, Meaning, and Action

3 Value : Conversation_type_mismatch

Meaning : The partner LU rejected an allocate request. The local TP called
the Allocate service and specified a value of Basic_conversation or
Mapped_conversation on the Conversation_type parameter. The partner TP
does not support the respective basic or mapped conversation protocol
boundary.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : When requesting the allocate, change
the Conversation_type parameter to specify a conversation type that the
partner TP supports.

5 Value : PIP_not_specified_correctly

Meaning : The partner LU rejected an allocate request. The partner TP
defined one or more initialization parameter (PIP) variables, which
APPC/MVS does not support.

System Action : The system returns this return code on a call that occurs
after the call to Allocate. The system does not return this code to callers of
the CPI Communications Allocate call.

Application Programmer Response : Ask the partner system programmer to
change the partner TP so it does not expect PIP data from the TP running on
MVS.

6 Value : Security_not_valid

Meaning : The partner LU rejected an allocate request. The specified security
information is not valid.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

8 Value : Sync_lvl_not_supported_pgm

Meaning : The partner LU rejected an allocate request. The local TP specified
a synchronization level (on the Sync_level parameter) that the partner TP
does not support.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See “Allocate” on page 8-1 for an
explanation of the Sync_level parameter. When requesting the allocate,
ensure that the Sync_level parameter specifies a correct value.

Send_Data

8-108 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-18. Return Codes for the Send_Data Service (continued)

Return
Code

Value, Meaning, and Action

9 Value : TPN_not_recognized

Meaning : The partner LU rejected an allocate request. The local TP specified
a partner TP that the partner LU does not recognize.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : Ask the partner system programmer to
provide a valid partner TP name. When requesting the allocate, specify the
valid partner TP name.

10 Value : TP_not_available_no_retry

Meaning : The partner LU rejected an Allocate request. The local TP specified
a partner TP that is known to the partner LU, but the partner LU cannot start
the TP. The condition is not temporary. The TP should not retry the Allocate
request.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

11 Value : TP_not_available_retry

Meaning : The partner LU rejected an allocate request. The local TP specified
a partner TP that the partner LU recognizes but cannot start. The condition
might be temporary.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : Retry the Allocate request. If the error
persists, see “Chapter 6. Diagnosing Problems with APPC/MVS TPs” on
page 6-1 for methods to use to diagnose the return code. See “Error_Extract”
on page 8-34 for the Error_Extract calling format.

17 Value : Deallocate_abend

Meaning : A partner TP called the Deallocate service. The request specified a
Deallocate_type of Deallocate_abend.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges information sent by the local TP that was not
received by the partner TP. The system returns this return code to the local
TP when it calls an APPC service in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

Send_Data

Chapter 8. APPC/MVS TP Conversation Callable Services 8-109

Table 8-18. Return Codes for the Send_Data Service (continued)

Return
Code

Value, Meaning, and Action

20 Value : Product_specific_error

Meaning : The system found a product-specific error.

System Action : The system might write symptom records, which describe
the error, to the logrec data set.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format. If
necessary, see “Diagnosing Product-Specific Errors” on page 6-46 for more
information about product-specific errors.

22 Value : Program_error_purging

Meaning : A partner TP called the Send_Error service for a basic or mapped
conversation. The conversation for the partner TP was in Receive or Confirm
state.

System Action : The system returns this return code to the local TP when it
calls an APPC service before sending any information. If the TP called
Send_Error while in Receive state and before it received all the information
that the partner TP sent, the system might purge the data. If the TP called
Send_Error while in Receive or Confirm state but after it received all the
information that the partner TP sent, the system does not purge the data.

Application Programmer Response : See the application programmer
response for return code six for this service.

24 Value : Program_parameter_check

Meaning : The system detected a program parameter check.

System Action : The system returns this return code to the caller of the
APPC service in error.

Application Programmer Response : See the application programmer
response for return code six for this service.

25 Value : Program_state_check

Meaning : The local TP called a service while running in a state in which the
call is not valid. The TP should not examine any other returned variables
associated with the call because nothing is placed in those variables.

System Action : The state of the conversation remains unchanged. For a list
of states that are valid for each call, see “Appendix C. APPC/MVS
Conversation State Table” on page C-1. The conversation was in send state
and the TP started, but the TP did not finish sending a logical record.

Application Programmer Response : See the application programmer
response for return code six for this service.

Send_Data

8-110 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-18. Return Codes for the Send_Data Service (continued)

Return
Code

Value, Meaning, and Action

26 Value : Resource_failure_no_retry

Meaning : An error caused the conversation to terminate. The condition is not
temporary. The application should not try to run the transaction until the
condition is corrected.

System Action : The system terminates the conversation.

Application Programmer Response : See the application programmer
response for return code six for this service.

27 Value : Resource_failure_retry

Meaning : An error caused the conversation to terminate. The condition might
be temporary.

System Action : The system terminates the conversation.

Application Programmer Response : Retry the transaction.

30 Value : Deallocated_abend_SVC

Meaning : The partner TP called Deallocate with a Deallocate_type of
Deallocate_abend_SVC.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

31 Value : Deallocated_abend_timer

Meaning : A partner TP called the Deallocate service with a Deallocate_type
of Deallocate_abend_timer.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

33 Value : SVC_error_purging

Meaning : A partner TP called the Send_Error service, and LU services on
the partner LU specified a value of SVC for the type of call. The conversation
for the partner TP was in Receive or Confirm state, and the call might have
caused information to be purged.

System Action : The system normally returns this code to the local TP after
the system sends some information to the partner TP. However, the system
can also return this code to the local TP before it sends any information.

Application Programmer Response : See the application programmer
response for return code six for this service.

Send_Data

Chapter 8. APPC/MVS TP Conversation Callable Services 8-111

Table 8-18. Return Codes for the Send_Data Service (continued)

Return
Code

Value, Meaning, and Action

100 Value : Take_backout

Meaning : This value is returned only when all of the following conditions are
true:

v The Sync_level is set to syncpt.

v The conversation is not in Initialize state.

v The program is using protected resources that must be backed out.

System Action : The system returns this return code to the caller of the
service.

Application Programmer Response : Before it can use this conversation or
any other protected conversations associated with the current context again,
the local TP must issue a Backout call to restore all protected resources to
their status as of the last synchronization point.

130 Value : Deallocated_abend_bo Meaning : This return code is returned only for
conversations with Sync_level set to syncpt.

The partner program issued a Deallocate call with Deallocate_type set to
deallocate_abend, or the partner LU has done so because of a partner
program abnormal-end condition.

System Action : If the conversation for the partner program was in Receive
state when the call was issued, information sent by the local program and not
yet received by the partner program is purged. The conversation is now in
Reset state.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

131 Value : Deallocated_abend_SVC_bo Meaning : This return code is returned
only for conversations with Sync_level set to syncpt.

The partner TP called Deallocate with a Deallocate_type of
deallocate_abend_SVC.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

Send_Data

8-112 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-18. Return Codes for the Send_Data Service (continued)

Return
Code

Value, Meaning, and Action

132 Value : Deallocated_abend_timer_bo Meaning : This return code is returned
only for conversations with Sync_level set to syncpt.

A partner TP called the Deallocate service with a Deallocate_type of
deallocate_abend_timer.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

133 Value : Resource_failure_no_retry_bo Meaning : This return code is returned
only for conversations with Sync_level set to syncpt.

An error caused the conversation to terminate. The condition is not
temporary. The application should not try to run the transaction until the
condition is corrected.

System Action : The system terminates the conversation.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

134 Value : Resource_failure_retry_bo Meaning : This return code is returned only
for conversations with Sync_level set to syncpt.

An error caused the conversation to terminate. The condition might be
temporary.

System Action : The system terminates the conversation.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

Restrictions
Transaction programs that call the Send_Data service while in task mode should
not have any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the section on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

Send_Error
Equivalent to:
v LU 6.2 (MC_)Send_Error
v CPI Send_Error (CMSERR)

Informs the partner program that the local program has detected an error.

Send_Data

Chapter 8. APPC/MVS TP Conversation Callable Services 8-113

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
Conversation_id

Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

Request_to_send_received
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Request_to_send_received specifies whether or not Request_to_send
notification has been received.

Valid return values for this parameter are:

Value Meaning

0 Request_to_send_not_received

Indicates that Request_to_send notification has not been received.

1 Request_to_send_received

The partner program has issued a Request_to_send, requesting the
local program to enter Receive state.

CALL ATBSERR(
Conversation_id,
Request_to_send_received,
Notify_type,
Error_Direction,
Return_code

);

Figure 8-17. ATBSERR - LU 6.2 Send Error

Send_Error

8-114 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

If Return_code indicates Program_parameter_check or Program_state_check, a
value is not returned in Request_to_send_received.

Notify_type
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. Programs can request asynchronous processing,
which returns control to the program immediately and later notifies the program
by ECB when the service is complete. The possible types are:

v None

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.

When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the
return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during asynchronous
processing, and the specified ECB is posted when all returned parameters
are set. The completion code field in the ECB contains the return code for
the service.

Error_Direction
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Error_Direction specifies the direction of the data flow in which the program
detected an error. This parameter is significant only if the Send_Error service is
issued in Send_Pending state.

Valid values for this parameter are:

Value Meaning

0 Receive_Error

Specifies that the program detected an error in the data it received from
another program.

1 Send_Error

Specifies that the program detected an error while preparing to send
data to the partner program.

Return_code
Returned parameter
v Type: Integer

Send_Error

Chapter 8. APPC/MVS TP Conversation Callable Services 8-115

v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. In
cases where an error code is returned, the program should not examine any
other returned variable associated with the call as nothing is placed in the
variables.

See the following section for descriptions of return codes that can be returned
to a caller of Send_Error.

Return Codes
If Send_Error is called in Send state, possible values for Return_code are:

Decimal Value Meaning
0 OK
3 Conversation_type_mismatch
5 PIP_not_specified_correctly
6 Security_not_valid
8 Sync_lvl_not_supported_pgm
9 TPN_not_recognized
10 TP_not_available_no_retry
11 TP_not_available_retry
17 Deallocated_abend
20 Product_specific_error
22 Program_error_purging
24 Program_parameter_check
25 Program_state_check
26 Resource_failure_no_retry
27 Resource_failure_retry
30 Deallocated_abend_SVC
31 Deallocated_abend_timer
33 SVC_error_purging
100 Take_backout
130 Deallocated_abend_bo
131 Deallocated_abend_svc_bo (basic conversations only)
132 Deallocated_abend_timer_bo (basic conversations only)
133 Resource_failure_no_retry_bo
134 Resource_failure_retry_bo

Note: Return codes 100 through 134 are possible values only for conversations
with a synchronization level of syncpt.

If Send_Error is called in Receive state, possible values for Return_code are:

Decimal Value Meaning
0 OK
18 Deallocated_normal
20 Product_specific_error
24 Program_parameter_check
25 Program_state_check
26 Resource_failure_no_retry
27 Resource_failure_retry
133 Resource_failure_no_retry_bo
134 Resource_failure_retry_bo
135 Deallocated_normal_bo

Send_Error

8-116 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Note: Return codes 133 through 135 are possible values only for conversations
with a synchronization level of syncpt.

If Send_Error is called in Send-pending state, possible values for Return_code are:

Decimal Value Meaning
0 OK
17 Deallocated_abend
20 Product_specific_error
22 Program_error_purging
24 Program_parameter_check
25 Program_state_check
26 Resource_failure_no_retry
27 Resource_failure_retry
30 Deallocated_abend_SVC
31 Deallocated_abend_timer
33 SVC_error_purging
100 Take_backout
130 Deallocated_abend_bo
131 Deallocated_abend_svc_bo (basic conversations only)
132 Deallocated_abend_timer_bo (basic conversations only)
133 Resource_failure_no_retry_bo
134 Resource_failure_retry_bo

Note: Return codes 100 through 134 are possible values only for conversations
with a synchronization level of syncpt.

If Send_Error is called in Confirm, Sync_point, Sync_point_send, or
Sync_point_deallocate state, possible values for Return_code are:

Decimal Value Meaning
0 OK
20 Product_specific_error
24 Program_parameter_check
25 Program_state_check
26 Resource_failure_no_retry
27 Resource_failure_retry
133 Resource_failure_no_retry_bo
134 Resource_failure_retry_bo

Note: Return codes 133 and 134 are possible values only for conversations with a
synchronization level of syncpt.

The following table describes all of the possible return codes for Send_Error:

Table 8-19. Return Codes for the Send_Error Service

Return
Code

Value, Meaning, and Action

0 Value : OK

Meaning : The call completed successfully.

System Action : If the call specified a Notify_type of ECB, APPC/MVS posts
the ECB specified on the Notify_type parameter when APPC/MVS finishes
processing the call asynchronously.

Application Programmer Response : None required.

Send_Error

Chapter 8. APPC/MVS TP Conversation Callable Services 8-117

Table 8-19. Return Codes for the Send_Error Service (continued)

Return
Code

Value, Meaning, and Action

3 Value : Conversation_type_mismatch

Meaning : The partner LU rejected an allocate request. The local TP called
the Allocate service and specified a value of Basic_conversation or
Mapped_conversation on the Conversation_type parameter. The partner TP
does not support the respective basic or mapped conversation protocol
boundary.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : When requesting the allocate, change
the Conversation_type parameter to specify a conversation type that the
partner TP supports.

5 Value : PIP_not_specified_correctly

Meaning : The partner LU rejected an allocate request. The partner TP
defined one or more initialization parameter (PIP) variables, which
APPC/MVS does not support.

System Action : The system returns this return code on a call that occurs
after the call to Allocate. The system does not return this code to callers of
the CPI Communications Allocate call.

Application Programmer Response : Ask the partner system programmer to
change the partner TP so it does not expect PIP data from the TP running on
MVS.

6 Value : Security_not_valid

Meaning : The partner LU rejected an allocate request. The specified security
information is not valid.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

8 Value : Sync_lvl_not_supported_pgm

Meaning : The partner LU rejected an allocate request. The local TP specified
a synchronization level (on the Sync_level parameter) that the partner TP
does not support.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See “Allocate” on page 8-1 for an
explanation of the Sync_level parameter. When requesting the allocate,
ensure that the Sync_level parameter specifies a correct value.

Send_Error

8-118 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-19. Return Codes for the Send_Error Service (continued)

Return
Code

Value, Meaning, and Action

9 Value : TPN_not_recognized

Meaning : The partner LU rejected an allocate request. The local TP specified
a partner TP that the partner LU does not recognize.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See the application programmer
response for return code six for this service.

10 Value : TP_not_available_no_retry

Meaning : The partner LU rejected an Allocate request. The local TP specified
a partner TP that is known to the partner LU, but the partner LU cannot start
the TP. The condition is not temporary. The TP should not retry the Allocate
request.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : See the application programmer
response for return code six for this service.

11 Value : TP_not_available_retry

Meaning : The partner LU rejected an allocate request. The local TP specified
a partner TP that the partner LU recognizes but cannot start. The condition
might be temporary.

System Action : The system returns this return code on a call that occurs
after the call to Allocate.

Application Programmer Response : Retry the Allocate request. If the error
persists, see “Chapter 6. Diagnosing Problems with APPC/MVS TPs” on
page 6-1 for methods to use to diagnose the return code. See “Error_Extract”
on page 8-34 for the Error_Extract calling format.

17 Value : Deallocated_abend

Meaning : A partner TP called the Deallocate service. The request specified a
Deallocate_type of Deallocate_abend.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges information sent by the local TP that was not
received by the partner TP. The system returns this return code to the local
TP when it calls an APPC service in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

18 Value : Deallocated_normal

Meaning : A partner TP called the Deallocate service for a basic or mapped
conversation. The request specified a Deallocate_type of
Deallocate_sync_level or Deallocate_flush.

System Action : The system returns this return code to the local TP when it
calls a service while the conversation is in Receive state.

Application Programmer Response : None required.

Send_Error

Chapter 8. APPC/MVS TP Conversation Callable Services 8-119

Table 8-19. Return Codes for the Send_Error Service (continued)

Return
Code

Value, Meaning, and Action

20 Value : Product_specific_error

Meaning : The system found a product-specific error.

System Action : The system might write symptom records, which describe
the error, to the logrec data set.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format. If
necessary, see “Diagnosing Product-Specific Errors” on page 6-46 for more
information about product-specific errors.

22 Value : Program_error_purging

Meaning : A partner TP called the Send_Error service for a basic or mapped
conversation. The conversation for the partner TP was in Receive or Confirm
state.

System Action : The system returns this return code to the local TP when it
calls an APPC service before sending any information. If the TP called
Send_Error while in Receive state and before it received all the information
that the partner TP sent, the system might purge the data. If the TP called
Send_Error while in Receive or Confirm state but after it received all the
information that the partner TP sent, the system does not purge the data.

Application Programmer Response : See the application programmer
response for return code six for this service.

24 Value : Program_parameter_check

Meaning : The local TP called an APPC service. One of the following errors
occurred in one or more parameters specified on the call:
v An unauthorized caller specified a Notify_type of ECB.
v The Sync_level field for the conversation was equal to sync_level_none.

System Action : The system returns this return code to the caller of the
APPC service in error.

Application Programmer Response : See the application programmer
response for return code six for this service.

25 Value : Program_state_check

Meaning : The local TP called a service while running in a state in which the
call is not valid. The TP should not examine any other returned variables
associated with the call because nothing is placed in those variables.

System Action : The state of the conversation remains unchanged. For a list
of states that are valid for each call, see “Appendix C. APPC/MVS
Conversation State Table” on page C-1. The conversation was in send state
and the TP started, but the TP did not finish sending a logical record.

Application Programmer Response : See the application programmer
response for return code six for this service.

Send_Error

8-120 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-19. Return Codes for the Send_Error Service (continued)

Return
Code

Value, Meaning, and Action

26 Value : Resource_failure_no_retry

Meaning : An error caused the conversation to terminate. The condition is not
temporary. The application should not try to run the transaction until the
condition is corrected.

System Action : The system terminates the conversation.

Application Programmer Response : See the application programmer
response for return code six for this service.

27 Value : Resource_failure_retry

Meaning : An error caused the conversation to terminate. The condition might
be temporary.

System Action : The system terminates the conversation.

Application Programmer Response : Retry the transaction.

30 Value : Deallocated_abend_SVC

Meaning : The partner TP called Deallocate with a Deallocate_type of
Deallocate_abend_SVC.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

31 Value : Deallocated_abend_timer

Meaning : A partner TP called the Deallocate service with a Deallocate_type
of Deallocate_abend_timer.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : See the application programmer
response for return code six for this service.

33 Value : SVC_error_purging

Meaning : A partner TP called the Send_Error service, and LU services on
the partner LU specified a value of SVC for the type of call. The conversation
for the partner TP was in Receive or Confirm state, and the call might have
caused information to be purged.

System Action : The system normally returns this code to the local TP after
the system sends some information to the partner TP. However, the system
can also return this code to the local TP before it sends any information.

Application Programmer Response : See the application programmer
response for return code six for this service.

Send_Error

Chapter 8. APPC/MVS TP Conversation Callable Services 8-121

Table 8-19. Return Codes for the Send_Error Service (continued)

Return
Code

Value, Meaning, and Action

100 Value : Take_backout

Meaning : This value is returned only when all of the following conditions are
true:

v The Sync_level is set to syncpt.

v The conversation is not in Initialize state.

v The program is using protected resources that must be backed out.

System Action : The system returns this return code to the caller of the
service.

Application Programmer Response : Before it can use this conversation or
any other protected conversations associated with the current context again,
the local TP must issue a Backout call to restore all protected resources to
their status as of the last synchronization point.

130 Value : Deallocated_abend_bo Meaning : This return code is returned only for
conversations with Sync_level set to syncpt.

The partner program issued a Deallocate call with Deallocate_type set to
deallocate_abend, or the partner LU has done so because of a partner
program abnormal-end condition.

System Action : If the conversation for the partner program was in Receive
state when the call was issued, information sent by the local program and not
yet received by the partner program is purged. The conversation is now in
Reset state.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

131 Value : Deallocated_abend_SVC_bo Meaning : This return code is returned
only for conversations with Sync_level set to syncpt.

The partner TP called Deallocate with a Deallocate_type of
deallocate_abend_SVC.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

Send_Error

8-122 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-19. Return Codes for the Send_Error Service (continued)

Return
Code

Value, Meaning, and Action

132 Value : Deallocated_abend_timer_bo Meaning : This return code is returned
only for conversations with Sync_level set to syncpt.

A partner TP called the Deallocate service with a Deallocate_type of
deallocate_abend_timer.

System Action : If the partner TP was in Receive state when it called
Deallocate, the system purges all information that was sent by the local TP
but was not yet received by the partner TP. The system returns this return
code to the local TP when it calls a service while in Send or Receive state.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

133 Value : Resource_failure_no_retry_bo Meaning : This return code is returned
only for conversations with Sync_level set to syncpt.

An error caused the conversation to terminate. The condition is not
temporary. The application should not try to run the transaction until the
condition is corrected.

System Action : The system terminates the conversation.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

134 Value : Resource_failure_retry_bo Meaning : This return code is returned only
for conversations with Sync_level set to syncpt.

An error caused the conversation to terminate. The condition might be
temporary.

System Action : The system terminates the conversation.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

135 Value : Deallocated_normal_bo Meaning : This return code is returned only for
conversations with Sync_level set to syncpt.

When the Send_Error call is issued in Receive state, incoming information is
purged by the system. This purged information might include an abend
deallocation notification from the partner program or system. The
conversation is now in Reset state.

System Action : The system returns this return code to the caller of the
service.

Application Programmer Response : Before it can use any other protected
conversations associated with the current context again, the local TP must
issue a Backout call to restore all protected resources to their status as of the
last synchronization point.

Send_Error

Chapter 8. APPC/MVS TP Conversation Callable Services 8-123

Restrictions
TPs that call the Send_Error service while in task mode should not have any
enabled unlocked task (EUT) functional recovery routines (FRRs) established. For
more information about EUT FRRs, see the section on providing recovery in z/OS
MVS Programming: Authorized Assembler Services Guide.

Set_Syncpt_Options
Equivalent to:
v LU 6.2 Set_Syncpt_Options
v (No CPI equivalent)

Changes the default system values that govern APPC/MVS processing during its
participation in the two-phase commit protocol for resource recovery processing.
The following options and their default values are in effect for each TP that issues
Commit calls, for all protected conversations in which the TP participates, from the
time the TP begins processing until Set_Syncpt_Options is issued to change them:

Option System Default Value

Vote_Read_Only_Permitted
NO

Wait_For_Outcome
YES

Action_If_Problems
BACKOUT

The TP must specify valid values for all parameters on each invocation of
Set_Syncpt_Options service.

For a call to Set_Syncpt_Options to complete successfully, TP resources must be
associated with the calling address space. TP resources are associated with the
calling address space after:

v A call to the CPI-C Initialize Conversation (CMINIT) service

v A call to the LU 6.2 Allocate service

v A call to the Register_for_Allocate service

v A call to the Define_Local_TP service

A program may successfully call Set_Syncpt_Options in the following situations as
well:

v After an alternate transaction scheduler’s XCF message user routine has
received an Allocate TP request message for the TP

v After an alternate transaction scheduler receives and processes an Allocate TP
request, and the TP begins running

v Before a call to either the Get_Conversation, or the CPI-C Accept_Conversation
(CMACCP) service.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit

Send_Error

8-124 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller cannot hold any locks
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
Vote_Read_Only_Permitted

Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Vote_Read_Only_Permitted specifies whether the local LU may vote read only
in a syncpoint operation, if:

v The local LU has made no changes to protected resources, and

v None of the resource managers subordinate to the local LU, in the distributed
transaction, have made any changes.

Valid values for this parameter are:

Value Meaning

0 Specifies that the current value for this parameter should remain in
effect (no change to the current setting).

1 NO

Specifies that voting read-only in a syncpoint operation is not allowed.

2 YES

Specifies that voting read-only in a syncpoint operation is allowed.

Wait_For_Outcome
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Wait_For_Outcome specifies whether the outcome of the syncpoint operation,
at all subordinate resources in the distributed transaction, must be known
before control is returned to the program. If a failure occurs and the TP
specified Wait_For_Outcome with a value of 1 (NO), the system might return

CALL ATBSSO4(
Vote_Read_Only_Permitted,
Wait_For_Outcome,
Action_If_Problems,
Reason_code,
Return_code

);

Figure 8-18. ATBSSO4 - LU 6.2 Set_Syncpt_Options

Set_Syncpt_Options

Chapter 8. APPC/MVS TP Conversation Callable Services 8-125

control from the Commit call with a return code value of rr_*_outcome_pending.
This return code value indicates that the outcome at one or more distributed
partners is unknown.

If the TP specified Wait_for_Outcome with a value of 2 (YES), the system does
not return control until the outcome of the syncpoint operation at all subordinate
resources is known.

Note: Even if the local TP specifies a value of 2 (YES), the system might
return control before the outcome is fully known, if other programs in the
distributed transaction specified Wait_for_Outcome with 1 (NO).

Valid values for this parameter are:

Value Meaning

0 Specifies that the current value for this parameter should remain in
effect (no change to the current setting).

1 NO

Specifies that the TP does not need to wait for the outcome of the
syncpoint operation before regaining control.

2 YES

Specifies that the TP must wait for the outcome of the syncpoint
operation before regaining control.

Action_If_Problems
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Action_If_Problems specifies the action taken by APPC/MVS when a unit of
recovery associated with the TP is in the IN-DOUBT state and APPC/MVS
receives an unrecognized message (a protocol violation) from the partner
(syncpoint initiator) that is supposed to instruct it to commit or backout the unit
of recovery.

Valid values for this parameter are:

Value Meaning

0 Specifies that the current value for this parameter should remain in
effect (no change to the current setting).

1 Commit

Specifies that the LU should instruct the syncpoint manager to
heuristically commit the unit of recovery because the overall decision of
the syncpoint initiator is unknown.

2 Backout

Specifies that the LU should instruct the syncpoint manager to
heuristically backout the unit of recovery because the overall decision of
the syncpoint initiator is unknown.

Reason_code
Returned parameter
v Type: Integer

Set_Syncpt_Options

8-126 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v Length: 32 bits

Reason_code contains additional information about the result of the call when
the return_code parameter contains a nonzero value.

Table 8-20 lists the return and reason codes, their values, and meanings,
associated with the Set_Syncpt_Options service return codes.

Table 8-20. Return and Reason Codes for Set_Syncpt_Options

Return Code
(Decimal)

Reason Code
(Decimal)

Value, Meaning, and Action

0 — Value : atb_ok

Meaning : The call completed successfully.

System Action : The system continues processing.

Application Programmer Response : None required.

20 All Value : atb_product_specific_error

Meaning : The service was unsuccessful. APPC/MVS
detected an environmental error during the processing of
this callable service. See Table 6-4 on page 6-46 for the list
of reason codes that accompany the product_specific_error
return code.

System Action : The system returns a
product_specific_error (decimal 20) return code to the
caller of the service. APPC/MVS writes a logrec data set
record that describes the error. The system might request
an SVC dump.

Application Programmer Response : Contact the system
programmer.

System Programmer Response : Contact the IBM Support
Center. Provide the logrec data set error record and the
SVC dump (if one is available).

24 All Value : atb_program_parameter_check

Meaning : A user-supplied parameter was found to be in
error. For example, a parameter contains characters not in
the required character set.

System Action : The system returns a
program_parameter_check (decimal 24) return code to the
caller.

Application Programmer Response : See the value
returned in the Reason_code parameter to determine the
specific parameter that contained an invalid value. Supply
a valid value and re-issue the service call.

Set_Syncpt_Options

Chapter 8. APPC/MVS TP Conversation Callable Services 8-127

Table 8-20. Return and Reason Codes for Set_Syncpt_Options (continued)

Return Code
(Decimal)

Reason Code
(Decimal)

Value, Meaning, and Action

24 1 Value : atb_invalid_vote_read_only

Meaning : The specified Vote_read_only_permitted
parameter does not contain a valid value.

System Action : The system returns a
program_parameter_check (decimal 24) return code to the
caller.

Application Programmer Response : Provide a valid
value for the Vote_read_only_permitted parameter and
re-issue the service call.

24 2 Value : atb_invalid_wait_for_outcome

Meaning : The specified Wait_for_outcome parameter does
not contain a valid value.

System Action : The system returns a
program_parameter_check (decimal 24) return code to the
caller.

Application Programmer Response : Provide a valid
value for the Wait_for_outcome parameter and re-issue the
service call.

24 3 Value : atb_invalid_action_if_problems

Meaning : The specified Action_if_problems parameter
does not contain a valid value.

System Action : The system returns a
program_parameter_check (decimal 24) return code to the
caller.

Application Programmer Response : Provide a valid
value for the Action_if_problems parameter and re-issue
the service call.

25 All Value : atb_program_state_check

Meaning : The local TP called a service while running in a
state in which the call is not valid.

System Action : The system returns a
program_state_check (decimal 25) return code to the
caller, and APPC/MVS might write a symptom record in the
logrec data set, which provides further information about
the program state check.

Application Programmer Response : See the Application
Programmer Response for the specific reason code that
was returned on the service call.

Set_Syncpt_Options

8-128 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 8-20. Return and Reason Codes for Set_Syncpt_Options (continued)

Return Code
(Decimal)

Reason Code
(Decimal)

Value, Meaning, and Action

25 4 Value : atb_extract_exit_not_specified

Meaning : An APPC/MVS service was invoked in an
address space that has more than one active TP.
APPC/MVS could not associate the request with a TP
because the transaction scheduler for the address space
did not specify an extract exit.

System Action : The system returns a
program_state_check (decimal 25) return code to the
caller.

Application Programmer Response : Contact the system
programmer.

System Programmer Response : Contact the owner of the
scheduler product. Ask the owner of the scheduler to
ensure that the scheduler product specifies an extract exit.
See the description of the Identify service in z/OS MVS
System Messages, Vol 3 (ASB-BPX) for information about
how to establish an extract exit.

25 5 Value : atb_extract_exit_failed

Meaning : A TP called an APPC/MVS conversation service
in an address space where more than one TP was running.
APPC/MVS called the transaction scheduler extract exit to
identify the active TP. The exit returned a non-zero return
code to APPC/MVS.

System Action : The system returns a
program_state_check (decimal 25) return code to the caller
and APPC/MVS writes a symptom record in the logrec data
set.

Application Programmer Response : Contact the system
programmer.

System Programmer Response : See the symptom record
in the logrec data set for a description of the error. Check
the return code from the transaction scheduler extract exit
in the scheduler extract control block (ATBSECB) in section
5 of the symptom record. The ATBSECB is in the first
key-length-data structure in section 5. See z/OS MVS Data
Areas, Vol 1 (ABEP-DALT) for a description of the
ATBSECB.

Set_Syncpt_Options

Chapter 8. APPC/MVS TP Conversation Callable Services 8-129

Table 8-20. Return and Reason Codes for Set_Syncpt_Options (continued)

Return Code
(Decimal)

Reason Code
(Decimal)

Value, Meaning, and Action

25 6 Value : atb_no_active_tp

Meaning : The call for this service was performed prior to
APPC/MVS allocating resources for the calling address
space.

System Action : The system returns a
program_state_check (decimal 25) return code to the
caller.

Application Programmer Response : Issue the service
call after issuing one of the following APPC/MVS services
that will associate TP resources to the calling address
space:
v CPI-C Initialize_Conversation (CMINIT)
v LU 6.2 Allocate
v Register_For_Allocates
v Define_Local_TP

Ensure that all the conditions required for a call to this
service are met. See “Set_Syncpt_Options” on page 8-124.

25 7 Value : atb_service_error

Meaning : A TP called an APPC/MVS conversation service.
An internal error occurred in APPC/MVS processing.

System Action : The system returns a
program_state_check (decimal 25) return code to the caller
and APPC/MVS writes a symptom record in the logrec data
set. The system might request an SVC dump.

Application Programmer Response : Contact the system
programmer.

System Programmer Response : Contact the IBM Support
Center. Provide the logrec data set error record and the
SVC dump (if one is available).

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. The
following table contains general descriptions of the possible return code values.
See Table 8-20 on page 8-127 for descriptions of possible reason codes.

Characteristics and Restrictions
Transaction programs that call the Set_Syncpt_Options service while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

Set_Syncpt_Options

8-130 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Note: If a TP calls Set_Syncpt_Options while a syncpoint operation is in progress
for the current context under which the TP is running, the
Set_Syncpt_Options request might not complete before APPC/MVS needs to
refer to the syncpoint options during the syncpoint operation. In this case,
the option values will not be changed in time for APPC/MVS to use the new
values. Instead, APPC/MVS uses the option values in effect before the TP
issued the call to Set_Syncpt_Options. Whenever possible, design
APPC/MVS programs to issue the call to Set_Syncpt_Options before a
syncpoint operation begins.

Set_TimeOut_Value
Sets the time limit in minutes that each subsequent APPC/MVS conversation call
will wait for VTAM APPCCMD requests to complete. For more information, see
“Setting a Timeout Value for Potential Network Delays” on page 4-13.

The Set_Timeout_Value service can also be invoked to alter the previously set
timeout_value.

For outbound transaction programs, the Set_TimeOut_Value service can be invoked
at any time after the conversation is successfully established by the Allocate or
CMINIT service.

For inbound transaction programs, the Set_TimeOut_Value service can be invoked
at any time after successful completion of the Get_Conversation, Receive_Allocate,
or CMACCP service.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
Conversation_ID

Supplied parameter
v Type: Character string
v Char Set: N/A

CALL ATBSTO5(
Conversation_id,
Timeout_Value,
Return_code

);

Figure 8-19. ATBSTO5 - Set_TimeOut_Value

Set_Syncpt_Options

Chapter 8. APPC/MVS TP Conversation Callable Services 8-131

v Length: 8 bytes

Conversation_ID specifies the conversation ID of the conversation for which you
want to time VTAM APPCCMD requests issued during APPC/MVS conversation
callable services. Specify the conversation_id that was returned from the
Allocate, CMINIT, CMACCP, Get_Conversation. or Receive_Allocate call.

Timeout_value
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits
v Value range: 0-1440 (decimal)

Specifies the time in minutes that all subsequent APPC/MVS conversation
callable services will wait for VTAM APPCCMD requests to complete.

The maximum supported Timeout_Value is 1440 minutes (24 hours). When a
Timeout_Value of zero is specified, VTAM APPCCMD requests issued by
subsequent APPC/MVS conversation callable services will not be timed.

Any error in the specification of this parameter will result in a
Program_Parameter_Check return code.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program.
Possible values of Return_code are:

Return Code Value, Meaning and Action

0 Value: OK

Meaning: The call completed successfully.

System Action: The system continues processing.

Application Programmer Response: None required.

20 Value: Product_Specific_Error

Meaning: The system found a product-specific error.

System Action: The system might write the symptom records which
describe the error to the logrec data set.

Application Programmer Response: See “Chapter 6. Diagnosing
Problems with APPC/MVS TPs” on page 6-1 for methods to diagnose the
return code. See “Error_Extract” on page 8-34 for the Error_Extract calling
format. If necessary, see “Diagnosing Product-Specific Errors” on page 6-46
for more information about product-specific errors.

ATBSTO5 - Set_TimeOut_Value

8-132 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

24 Value: Program_Parameter_Check

Meaning: The system detected a program parameter check.

System Action: The system returns this return code to caller of the APPC
service in error.

Application Programmer Response: See “Chapter 6. Diagnosing
Problems with APPC/MVS TPs” on page 6-1 for methods to use to
diagnose the return code. See “Error_Extract” on page 8-34 for the
Error_Extract calling format.

Restrictions
Transaction programs that call the Set_Timeout_Value service while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

ATBSTO5 - Set_TimeOut_Value

Chapter 8. APPC/MVS TP Conversation Callable Services 8-133

ATBSTO5 - Set_TimeOut_Value

8-134 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Chapter 9. APPC/MVS Advanced TP Callable Services

APPC/MVS provides a group of more advanced callable services that are specific
to MVS and have no LU 6.2 or CPI equivalent.

Programs that use APPC/MVS advanced TP services must be link-edited with the
APPC/MVS advanced TP services routine, ATBATP, and optionally, ATBCTS (if your
program calls Reject_Conversation or Set_Conversation_Accounting_Information).
The ATBATP and ATBCTS routines are shipped in SYS1.CSSLIB.

Advanced TP Callable Services with Multiple Call Names
The following table lists the advanced TP callable services that have more than one
associated call name. This chapter describes the current versions of the calls,
which are the preferred programming interfaces for these services. The previous
versions are described in “Appendix E. Previous Versions of APPC/MVS Callable
Services” on page E-1.

Table 9-1. Advanced TP Callable Services with Multiple Call Names

Service Name Previous Call
Name

Current Call
Name

Reference for
Current Call

Cleanup_TP ATBCMCTU ATBCUC1 “Cleanup_TP” on
page 9-5

Asynchronous_Manager
Requirements . 9-2
Format . 9-2
Parameters . 9-2
Restrictions . 9-3

You can call the Asynchronous_Manager service either to determine whether there
are any asynchronous APPC/MVS calls outstanding in an address space or to clean
up an entire TP for which an asynchronous request is outstanding. Asynchronous
APPC/MVS calls include any calls that have asynchronous processing specified on
the Notify_Type parameter.

The Asynchronous_Manager service is particularly useful in TSO/E environments
because TSO/E does not support the invocation of authorized commands or
programs while an asynchronous APPC/MVS call is outstanding in the same
address space. A program that needs to invoke an authorized command or program
could first call the Asynchronous_Manager service to find out if there are any
asynchronous calls outstanding in the address space and, if necessary, call
Asynchronous_Manager again to clean up the TPs that submitted those calls. For
example, you can call the Asynchronous_Manager service to clean up a TP in
response to message IKJ56610I, which indicates attempted invocation of an
authorized command or program while an asynchronous call is outstanding.

Note that the Asynchronous_Manager service only returns the number of
asynchronous calls that are outstanding at the time the Asynchronous_Manager
service is called; subsequent asynchronous calls are not reflected. Therefore, the
query function of the Asynchronous_Manager service is most effective in an
address space with no other tasks performing asynchronous APPC/MVS work.

© Copyright IBM Corp. 1991, 2001 9-1

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
Function

Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Specifies the function to be performed. Valid values for this parameter are:

Value Meaning

1 Query - Asynchronous_Manager returns the number of outstanding
asynchronous calls for the address space.

2 Cleanup - Asynchronous_Manager cleans up any TPs that have
outstanding asynchronous calls. The cleaned up TPs receive a return
code of Deallocated_abend. See “Appendix B. Explanations of Return
Codes for CPI Communications Services” on page B-1 for an
explanation of this return code.

Asynchronous_Number
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Specifies the number of outstanding asynchronous requests in the address
space. This field is not modified for the Cleanup function.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

CALL ATBAMR1 (
Function,
Asynchronous_number,
Return_Code

);

Figure 9-1. ATBAMR1 - Asynchronous_Manager

Asynchronous_Manager

9-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

The Asynchronous_Manager service may return one of the following values in
the Return_code parameter:

Decimal Value Description

00 The Asynchronous_Manager service query function completed
successfully. The Asynchronous_Number parameter contains a
valid value.

The Asynchronous_Manager service completed successfully for
the cleanup function. No TPs needed to be cleaned up. The
Asynchronous_Number parameter is not updated.

04 The Asynchronous_Manager service completed successfully for
the cleanup function. A TP was cleaned up. The
Asynchronous_Number parameter is not updated.

16 An APPC/MVS service failure occurred.

20 The caller holds a lock or is disabled.

24 The function code is not valid.

32 The Asynchronous_Manager service was invoked for a
scheduler address space.

36 The caller is in SRB mode.

44 APPC/MVS is not available.

48 APPC/MVS is ending.

Restrictions
Transaction programs that call the Asynchronous_Manager service while in task
mode should not have any enabled unlocked task (EUT) functional recovery
routines (FRRs) established. For more information about EUT FRRs, see the
section on providing recovery in z/OS MVS Programming: Authorized Assembler
Services Guide.

When the Asynchronous_Manager has been called to clean up an entire TP for
which an asynchronous request is outstanding and a protected conversation is
associated with the TP to be cleaned up, APPC takes the following actions against
the protected conversation:

Note: The outstanding asynchronous call does not have to be on a protected
conversation for the following actions to be taken against a protected
conversation associated with the TP to be cleaned up.

When a syncpoint operation IS in progress for the current UR for the context with
which the protected conversation is associated, APPC/MVS does not immediately
deallocate the conversation. The syncpoint operation is allowed to complete. As part
of the syncpoint processing, the protected conversation might be deallocated, in
which case no further cleanup is required for that conversation.

If the conversation was not deallocated, however, cleanup processing proceeds in
the same manner as it does when a syncpoint operation IS NOT in progress at the
time the Cleanup service is issued:

v The protected conversation is deallocated with TYPE(ABEND_SVC).

v The current UR is put into backout-required state.

Asynchronous_Manager

Chapter 9. APPC/MVS Advanced TP Callable Services 9-3

Note: When a UR (unit of recovery) is in the backout-required state, no new
APPC protected conversations may be allocated or accepted by a
transaction program instance associated with the current UR nor may
local protected resources associated with the current UR be committed. A
Backout call should be issued to backout the local protected resources
associated with the current UR. Once the current UR is backed out or the
current context is ended, new APPC protected conversations may be
associated with a new transaction program instance.

v If the protected conversation is an inbound conversation, the logical unit of work
ID (LUWID) for the next UR is reset.

v The current UR and subsequent units of recovery for the context will not include
the protected conversation being cleaned up by this service.

Accept_Test
The Accept_Test service specifies that the caller is ready to test the TP registered
by a previous call to Register_Test. The Accept_Test service causes the caller to
wait for the next inbound allocate request to arrive for that TP on behalf of that
caller, and for the APPC test environment to be set up in the caller’s address space.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
TP_ID

Returned parameter
v Type: Character string
v Char Set: N/A
v Length: 8 bytes

The TP_ID is a token that represents the instance of the transaction program
that was initiated for testing. To deallocate and clean up the conversation after
the test is finished, supply this TP_ID on a call to the Cleanup_TP service.

Return_code
Returned parameter

CALL ATBTEA1 (TP_ID,
Return_Code

);

Figure 9-2. Invocation of the Accept_Test Callable Service

Asynchronous_Manager

9-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Decimal Value Description

0 Accept_Test completed successfully.

4 The request was rejected because there was no Register_Test
request active for the caller’s address space.

8 APPC/MVS is not available.

12 The test request failed a RACF SECLABEL check.

16 APPC/MVS service failure.

20 The user was not authorized to execute the requested TP.

24 The test request was canceled by the Unregister_Test service.

28 There is an existing APPC conversation in the address space or
conversation resources were not all cleaned up by previous
conversations.

Restrictions
Transaction programs that call the Accept_Test service while in task mode should
not have any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the section on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

Cleanup_TP
You can call the Cleanup_TP service from an unauthorized program to request that
the APPC component clean up all conversation resources associated with a
transaction program instance that is running in the caller’s address space.
Conversation resources include network resources, control blocks, and buffers
which are used by the APPC component to manage the transaction program
instance and its conversations.

Cleanup_TP is an unauthorized version of the Cleanup_TP scheduler service
described in z/OS MVS System Messages, Vol 3 (ASB-BPX).

The primary use for Cleanup_TP is to clean up conversation resources left after
testing a TP with the Register_Test and Accept_Test services.

The specified TP_ID is deleted from the system asynchronously as a result of this
call, but cleanup processing also occurs asynchronously. Conversations with active
APPC requests are not immediately deallocated. After the partner TP responds,
APPC/MVS returns a deallocate condition and deallocates the conversation.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts

Accept_Test

Chapter 9. APPC/MVS Advanced TP Callable Services 9-5

Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
TP_ID

Supplied parameter
v Type: Character String
v Char Set: No restriction
v Length: 8 bytes

Specifies the transaction program instance which is to be cleaned up. All
conversations owned by this transaction program instance are to be
deallocated.

Condition
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Specifies the deallocation condition that has occurred. This field is used to
determine the type of deallocate and sense code that is issued by the APPC
component to the partner transaction program.

Valid values for this parameter are:

Value Meaning

0 Normal

Specifies that the transaction program completed normally, even though
it may have left active conversations. The APPC component deallocates
all conversations in a proper state for normal deallocation with
DEALLOCATE TYPE(SYNC_LEVEL). All conversations not in the
proper state for a normal deallocation are deallocated with
TYPE(ABEND_SVC).

1 System

Specifies that the transaction program ended abnormally. All active
conversations are deallocated with TYPE(ABEND_SVC).

Note: If the value is not one of the values listed above, 0 (Normal) is used as
the default.

CALL ATBCUC1 (TP_ID,
Condition,
Notify_Type,
Return_Code

);

Figure 9-3. ATBCUC1 - Cleanup_TP (Unauthorized Version)

Cleanup_TP

9-6 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Notify_Type
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 4-8 bytes

Specifies the type of notification to be used to signal the TP that the TP_ID is
deleted from the system.

APPC/MVS supports the following types of notification:

Type Explanation

None No notification is requested. When specified as a notification option for
Cleanup_TP processing, the Cleanup_TP processing is performed
synchronously, and control is returned to the caller when the TP_ID is
deleted from the system. To specify this notification option, the caller
must pass a four-byte structure containing a fullword binary zero.

ECB Requests that the system perform notification by posting an ECB. The
ECB to be posted is also specified on the Notify_Type parameter. When
ECB notification is specified, Cleanup_TP processing is performed
asynchronously, and control is returned to the caller before processing
is complete. To specify this notification option, the caller must pass an
eight-byte structure containing a fullword binary one (X'0000 0001'),
followed by the address of a fullword area to be used as the ECB.
APPC/MVS requires that the ECB reside in the home address space.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Cleanup_TP may return one of the following values in the return code
parameter:

Decimal Value Meaning

0 Request accepted. All conversations owned by the transaction
program instance will be cleaned up asynchronously.

4 No conversations exist to be cleaned up.

8 The TP_ID parameter specified a nonexistent transaction
program instance.

12 The asynchronous request failed. Resubmit the request with a
Notify_Type of None or report the problem to IBM.

20 Product specific error.

32 The requested service is not supported in the caller’s
environment. For example, this return code will be given if the
caller invokes any of the transaction scheduler services when
holding a lock.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Cleanup_TP

Chapter 9. APPC/MVS Advanced TP Callable Services 9-7

Restrictions
v Transaction programs that call the Cleanup_TP service while in task mode

should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

v Regardless of the condition parameter value specified for this service,
APPC/MVS cleans up protected conversations differently, depending on whether
a syncpoint operation is in progress. When a syncpoint operation is in progress
for the current UR for the context with which the protected conversation is
associated, APPC/MVS does not immediately deallocate the conversation. The
syncpoint operation is allowed to complete. As part of the syncpoint processing,
the protected conversation might be deallocated, in which case no further
cleanup is required for that conversation.

If the conversation was not deallocated, however, cleanup processing proceeds
in the same manner as it does when a syncpoint operation is not in progress at
the time the Cleanup service is issued:

– The protected conversation is deallocated with TYPE(ABEND_SVC).

– The current UR is put into backout-required state.

– If the protected conversation is an inbound conversation, the logical unit of
work ID (LUWID) for the next UR is reset.

– The current UR and subsequent units of recovery for the context will not
include the protected conversation being cleaned up by this service.

Extract_Information
Extract_Information is a generalized service that you can use to extract detailed
information about the conversations and scheduling of active APPC/MVS
transaction programs. Extract_Information returns information that is not available
from the Get_Attributes, Get_TP_Properties, or CPI Communications Extract_*
calls.

Categories of Information
You can extract two categories of information: scheduling and conversation
information, as specified by the Extract_code parameter.

Scheduling Information
The scheduling information that Extract_Information returns depends on the
transaction scheduler under which the TP is running:

v When the transaction program is running under the APPC/MVS transaction
scheduler, you can use Extract_Information to obtain the TP schedule type
(standard or multi-trans) and additional information such as the transaction
initiator class and times and dates when the TP was scheduled and initiated.

v When you request scheduling information for a TP running under another
transaction scheduler, that scheduler’s extract exit is called to return the
requested information. The exit must provide whatever data is required by its
published interface. Other transaction schedulers may provide their own format of
data or give a return code indicating that no data is provided or that an error
occurred. For information about providing an extract exit for a transaction
scheduler, see z/OS MVS System Messages, Vol 3 (ASB-BPX).

Cleanup_TP

9-8 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

APPC Conversation Information
When you request APPC conversation information, you might be required to provide
a value for the Qualifier_type or Qualifier_value parameter, or both, to indicate
whether the request is for information about the caller’s own conversation, or the
conversation of another transaction program instance (TP_ID), or a specific
conversation_id. The caller must be in supervisor state or PSW key 0-7 to:

v Request information about a specific TP_ID.

v Request information about a specific conversation_id that is not associated with
the caller’s address space.

When you specify extract_code X'0000' (summary conversation information), the
service extracts the following conversation information for the transaction program
indicated by Qualifier_type and Qualifier_value:

v Total number of conversations.

The total number of conversations associated with the TP_ID, currently active or
deallocated. This includes the inbound conversation that might have started the
TP, later inbounds that were processed (if the TP is a multi-trans), and all
conversations started by issuing an Allocate call.

v Total number of allocated conversations (started by a CMALLC or Allocate call).

v Total number of Sends (CMSEND and Send_Data calls).

v Total amount of data (number of characters of data) sent from the program’s
send buffers.

v Total number of Receives (CMRCV, Receive_Immediate, and Receive_and_Wait
calls).

v Total amount of data (number of characters of data) received by the program’s
receive buffers.

v Total number of currently active conversations (not deallocated or disconnected).

When you specify extract_code X'0001' (specific conversation information), the
service extracts the conversation information shown in “Contents of the Extract
Buffer” on page 9-13 for the conversation_id indicated by Qualifier_value.

Requirements

Authorization: Supervisor state or problem state, any PSW key (see
“Characteristics and Restrictions” on page 9-12).

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space, except for the buffer parameter

Extract_Information

Chapter 9. APPC/MVS Advanced TP Callable Services 9-9

Format

Parameters
Extract_code

Supplied parameter
v Type: Integer
v Length: 32 bits

Specifies the code that identifies the unique information required by the calling
program. For TPs running under the APPC/MVS transaction scheduler, specify
one of the following values (right-justified):
v Extract_code = X'1000': complete scheduling information
v Extract_code = X'1001': scheduler name and schedule type only
v Extract_code = X'0000': summary conversation information
v Extract_code = X'0001': specific conversation information.

For TPs processed by an APPC/MVS server, specify one of the following
values:
v Extract_code = X'0000': summary conversation information
v Extract_code = X'0001': specific conversation information.

For TPs running under other transaction schedulers, you can specify an extract
code value in the range X'1000' through X'1FFF' depending on which values the
scheduler supports.

Qualifier_type
Supplied parameter
v Type: Integer
v Length: 32 bits

If you request scheduling information (Extract_code = X'1000' - X'1FFF'):

v The APPC/MVS transaction scheduler ignores any values for this parameter.

v Other transaction schedulers may accept values for this parameter; for TPs
running under another transaction scheduler, any value you specify is passed
as input in the EXTRACT_QUALTYPE field to the transaction scheduler
extract exit.

If you request summary conversation information (Extract_code = X'0000'), the
following values are acceptable:

v Qualifier_type = 0

Specifies conversation information about the caller. Qualifier_value should be
ignored.

v Qualifier_type = 1

CALL ATBEXAI(
Extract_code,
Qualifier_type,
Qualifier_value,
Access_token,
Buffer_length,
Buffer,
Return_code

);

Figure 9-4. ATBEXAI - Information Extract Service

Extract_Information

9-10 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Specifies conversation information about a specified TP_ID. Qualifier_value
must be the specified TP_ID. To use this value of Qualifier_type, the caller
must be in supervisor state or PSW key 0-7.

If you request conversation-specific information (Extract_code = X'0001'),
APPC/MVS ignores the Qualifier_type.

Qualifier_value
Supplied parameter
v Type: Character
v Char Set: No restriction
v Length: 8 bytes

The meaning of Qualifier_value is determined by the values you specify for
Extract_code and Qualifier_type. Depending on those values, APPC/MVS treats
Qualifier_value as follows:

v If you request complete scheduling information (Extract_code = X'1000'),
Qualifier_value is ignored.

v If you request summary conversation information (Extract_code = X'0000'),
the value in Qualifier_value is determined by the value you specify for
Qualifier_type.

v If you request specific conversation information (Extract_code = X'0001'),
Qualifier_value contains the identifier of the conversation (conversation_id)
for which information is to be extracted. To request information about a
conversation_id that is not associated with the caller’s address space, the
caller must be in supervisor state or PSW key 0-7.

When specified with a valid scheduler Extract_code for TPs running under
another transaction scheduler, any value is passed as input in the
EXTRACT_QUALTYPE field to the transaction scheduler extract exit.

Access_token
Supplied parameter
v Type: Integer
v Length: 32 bits

Access_token specifies the Access List Entry Token (ALET) of the address
space or data space in which the buffer resides for Information_Extract calls.

APPC/MVS always uses Access_token together with the address of the buffer
to resolve addressing to the transaction program’s data. To specify that the
buffer address passed should not be ALET qualified, an Access_token value of
zero should be supplied. APPC/MVS will then consider the buffer to reside in
the primary address space of the caller.

The Access_token can:

v Represent an entry on the dispatchable unit access list (DU-AL)

v Represent an entry on the caller’s primary address access list (PASN-AL),
only if the entry points to a SCOPE=COMMON data space.

The Access_token cannot:

v Be the value 1 (which indicates “secondary ASID”)

v Represent an entry on the caller’s PASN-AL that does not point to a
SCOPE=COMMON data space.

Extract_Information

Chapter 9. APPC/MVS Advanced TP Callable Services 9-11

For more information about ALETs for SCOPE=COMMON data spaces, see
“Features of the MVS-Specific Services” on page 2-14.

Buffer_length
Supplied/Returned parameter
v Type: Integer
v Length: 32 bits

Specifies the length of the buffer where the information is to be returned.

Buffer_length will be updated to indicate the actual amount of the buffer used to
return the data. This will be less than or equal to the Buffer_length that was
supplied.

Buffer
Returned parameter
v Type: Character string
v Char Set: No restriction
v Length: 0-32767 bytes

Specifies the buffer to contain extracted data. For information on the format of
the extracted data that is returned, see “Contents of the Extract Buffer” on
page 9-13.

Return_code
Returned parameter

Decimal Value Description

0 Successful processing.

4 Buffer length too small. Only partial information is returned.

8 No information is returned for one of the following reasons:

v The caller is not a transaction program

v No transaction program was executing in the specified
address space

v No scheduler extract exit was defined for the scheduler of
this transaction program.

12 The Extract_code was incorrect or unsupported.

16 Extract_Information service failure.

20 The caller is disabled or holds a lock.

28 An incorrect version of ATBATP was used to call
Extract_Information.

36 The calling program specified incorrect or inconsistent
parameters, or parameters it was not authorized to use.

44 APPC/MVS is not active.

48 The Qualifier_value was not valid.

Characteristics and Restrictions
1. The caller must be in supervisor state or PSW key 0-7 to do the following:

v Request summary conversation information (Extract_code = X’0000’) about a
specific TP_id (Qualifier_type = 1)

v Request information about a specific Conversation_id that is not associated
with the caller’s address space.

Extract_Information

9-12 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

2. A program requiring information for a particular TP_id must extract it before the
TP is terminated (Cleanup_Address_Space call is issued). Conversation
information must be extracted before the conversation is deallocated. APPC
conversation information is kept in real time and not logged by APPC/MVS.

3. The totals for conversation information are running totals (they are not reset
after extraction). This service does not change or alter the contents of the data
extracted.

4. Transaction programs that call the Extract_Information service while in task
mode should not have any enabled unlocked task (EUT) functional recovery
routines (FRRs) established. For more information about EUT FRRs, see the
section on providing recovery in z/OS MVS Programming: Authorized Assembler
Services Guide.

Contents of the Extract Buffer
Use the following mapping macros for the format and contents of the information
extract buffer when Extract_Information is called with the extract codes supported
by the APPC/MVS transaction scheduler. These mapping macros are documented
in z/OS MVS Data Areas, Vol 1 (ABEP-DALT).

For this type of extracted information: Requested
through extract
code value:

Use this
mapping macro:

Complete scheduling information X'1000' ATBEXSCH

Scheduler name and type only X'1001' ATBEXSCH

Summary conversation information X'0000' ATBEXCON

Specific conversation information X'0001' ATBEXCOS

For Summary Conversation Information (Extract Code X’0000’)
There is no restriction on the largest number that the conversation totals can
accumulate. To accommodate multi-trans programs that are started and stay in
execution, each count in the “Total amount of data sent” and “Total amount of data
received” fields is returned as a normalized, long floating point number in the form
X'eekhhhhh hhhhhhhh', where:

v ‘ee’ consists of a ‘0’ sign bit followed by a 7-bit characteristic (in excess 64
notation)

v ‘khhhhh hhhhhhhh’ is a normalized hexadecimal fraction in which:

– ‘k’ represents a hexadecimal digit in the range 1-F (except when the floating
point value is a “true zero”), and

– Each ‘h’ represents a hexadecimal digit in the range 0-F.

When the hexadecimal value is 0, a “true zero” (X'00000000 00000000') is returned
as the floating point representation.

Some examples of typical values returned are:

Packed-decimal
representation

64-bit binary representation Normalized Long FP
representation

000000000000000C 0000000000000000 0000000000000000

000000000001000C 00000000000003E8 433E800000000000

000000000002048C 0000000000000800 4380000000000000

Extract_Information

Chapter 9. APPC/MVS Advanced TP Callable Services 9-13

Packed-decimal
representation

64-bit binary representation Normalized Long FP
representation

999999999999999C 00038D7EA4C67FFF 4D38D7EA4C67FFF0

For Specific Conversation Information (Extract Code X’0001’)
Some of the information returned in the extract buffer is:

v EXCOS_PLU_LOCATION, which indicates whether the partner LU resides on
this system (local) or another system in the network (remote). The possible
values are:

0 APPC/MVS could not yet determine the location of the partner LU

1 Remote

2 Local

v EXCOS_CONV_KIND, which, for inbound conversations, indicates whether the
conversation was processed by an APPC/MVS server or not (probably because a
transaction scheduler processed the inbound conversation). For outbound
conversations, this field always contains a zero. The possible values are:

0 Not processed by an APPC/MVS server

1 Processed by an APPC/MVS server.

v EXCOS_SCHED_NAME, which is the scheduler name. This field contains blanks
for conversations not processed by a transaction scheduler, such as:

– Inbound conversations processed by an APPC/MVS server

– Outbound conversations from address spaces not associated with a
transaction scheduler (such as a TSO/E user or a batch job).

v EXCOS_TP_NAME, which is the name of the partner TP. If the conversation is
inbound, this field contains blanks.

v EXCOS_LOCAL_TP_NAME, which is the name of the local TP. If the
conversation is outbound, this field contains the name of the program that
initiated the conversation (through the Allocate service). If the conversation is
inbound, this field contains the name of the program that was attached on this
LU because of an Allocate call.

v EXCOS_CONV_START_TIME:

– For inbound conversations , this field contains the date and time APPC/MVS
routed the conversation to an address space for subsequent processing. For
conversations processed by APPC/MVS servers, this is when the server
received the conversation from an allocate queue (through the
Receive_Allocate service). For scheduled conversations, this is when the
transaction scheduler directed the allocate request to an initiator address
space for processing.

– For outbound requests , this field contains the date and time the local
program called the Allocate service to initiate a conversation.

This information appears in the format provided by the STORE CLOCK (STCK)
assembler instruction.

v EXCOS_LAST_SERVICE_RETURN_CODE, which is the last return code
received from a callable service during this conversation. If the return code
indicated a product-specific error (decimal 20), the next field in this buffer
contains the reason code for the error.

v EXCOS_URID, which is the unit of recovery identifier for a protected
conversation (conversation with a synchronization level of syncpt).

Extract_Information

9-14 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Get_Transaction
When APPC/MVS transaction programs are assigned a TP schedule type of
multi-trans in the TP profile, those TPs can use the Get_Transaction service to hold
consecutive conversations with multiple partner programs, without having to be
terminated and reinitialized for each conversation.

TPs call Get_Transaction apart from the actual APPC conversation, in a part of the
TP called a multi-trans shell . The multi-trans shell gets control first, during
initialization, and issue Get_Transaction when the program is ready to handle the
first incoming conversation request. Before issuing Get_Transaction to request
consecutive conversations, the multi-trans shell is responsible for doing whatever
cleanup is necessary to ensure that consecutive users maintain their data integrity
and are isolated from one another and from resources used exclusively by the shell.

When APPC/MVS initiates a multi-trans TP, the TP’s initial execution environment is
set by a generic userid specified in the TP profile. When a conversation begins, the
environment of the multi-trans TP changes to reflect the calling partner’s security,
accounting, and distribution characteristics. The environment is thus “personalized”
for each consecutive caller that receives control from a subsequent Get_Transaction
request. The multi-trans TP returns to its generic execution environment at
termination or by issuing a Return_Transaction call from its multi-trans shell.

In response to each Get_Transaction call, the APPC/MVS transaction scheduler
looks for the next incoming allocate request for the program. When it finds a
request, APPC/MVS returns control from the Get_Transaction service with a return
code of zero. The multi-trans shell then passes control to the part of the program
that holds the actual conversation. Each Get_Transaction call deallocates any
conversation received in response to a previous Get_Transaction call with a
deallocate Type(Abend). For multi-trans TPs processing protected conversations,
APPC/MVS causes all protected resources updated since the last commit or
backout to be backed out if the multi-trans TP did not issue a Backout or Commit
call prior to calling Get_Transaction to retrieve the next incoming allocate request.

For examples of using the Get_Transaction service with a multi-trans shell, see
“Examples of Multi-Trans Scheduling” on page 4-21.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN = SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Get_Transaction

Chapter 9. APPC/MVS Advanced TP Callable Services 9-15

Format

Parameters
Return_code

Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program.

Valid return values for this parameter are:

Decimal Value Description

0 An inbound transaction was obtained and is ready to run.

8 The Get_Transaction request waited for an interval based on
installation response time goals and current demand for
initiators in this class, up to a maximum of 5 minutes. No more
work was available. The caller can call the Get_Transaction
service again to wait for more work to arrive. The caller’s
execution environment is the environment that was set by the
generic userid specified in the caller’s TP profile.

12 The APPC/MVS transaction scheduler was not active. The
caller cannot call the Get_Transaction service again to wait for
more work to arrive.

16 Because of conditions in the TP or the TP’s profile, no work
was available. The calling environment is not valid because:

v The TP is not scheduled as multi-trans

v The TP was not running under an APPC/MVS transaction
scheduler initiator

v The calling program was in cross memory mode or SRB
mode when it called the Get_Transaction service.

The caller’s execution environment remains unchanged from
when the TP called the Get_Transaction service.

Verify that the TP was running under the APPC transaction
scheduler, in task mode. Verify that the TP’s profile specified a
TPSCHED_TYPE of MULTI_TRANS.

20 System error.

24 A previous call to the Get_Transaction or Return_Transaction
service is still in progress in the same address space.

The caller’s security and job control language (JCL)
environment remain unchanged when the Get_Transaction

CALL ATBGTRN(
Return_code

);

Figure 9-5. ATBGTRN - Obtaining the Next Transaction

Get_Transaction

9-16 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

service is called. However, the security and JCL environment
may change when the previous Get_Transaction or
Return_Transaction call ends.

28 The operator entered one or more commands (or the system
administrator entered a configuration definition) that caused no
more work to be available. The caller cannot call the
Get_Transaction service again to wait for more work to arrive.
The TP should terminate. The caller’s execution environment is
the environment that was set by the generic userid specified in
the caller’s TP profile.

Note: The system can return this code in the following
situations:

v The system operator entered a SET command that executed
a CLASSDEL statement in an ASCHPMxx parmlib member,
which specified that an APPC scheduler class is to be
deleted. The scheduler class is running the multi-trans TP;
the multi-trans TP has not called Get_Transaction service.

v The APPC scheduler forced the multi-trans TP to terminate
so the APPC scheduler can run other work in the same
APPC scheduler class.

v The system administrator updated the profile for the
multi-trans TP while the multi-trans TP was either running or
waiting for work.

Validate that the CLASS statement in the TP profile for the
multi-trans TP is correct. If no errors are found, validate that no
other TP profile has the same class name specified on the
CLASS statement.

Restrictions
1. Transaction programs that call the Get_Transaction service while in task mode

should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

2. When a multi-trans TP creates subtasks, only one task can call Get_Transaction
at a time. This is because each call to Get_Transaction changes the caller’s
execution environment until the subtask either terminates or calls
Return_Transaction and receives a return code of zero.

3. When a multi-trans TP creates a new jobstep task or subtask, the new jobstep
task or subtask (and all of its subtasks) cannot call Get_Transaction.

4. A multi-trans TP cannot call Get_Transaction while a previous call to
Get_Transaction is still in progress in the same address space.

Register_Test
The Register_Test service requests that a TP be initiated for testing purposes in the
caller’s address space instead of in an APPC initiator. The service directs
APPC/MVS to initiate the TP in the caller’s address space when the next inbound
allocate request for that TP, on behalf of that caller, arrives. The caller must set the
appropriate environment for the TP, and must call the Accept_Test service when it is

Get_Transaction

Chapter 9. APPC/MVS Advanced TP Callable Services 9-17

ready to receive and run the TP. The caller can include its own interactive
debugging facilities to help test and diagnose the TP.

This service does not support multi-trans TPs.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
TP_Name_Length

Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Specifies the length of the data contained in the TP_Name parameter.

TP_Name
Supplied parameter
v Type: Character
v Char Set: 00640
v Length: 1-64 bytes

The name of the TP to be tested.

LU_Name_Length
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Specifies the length of the data contained in the LU_Name parameter.

LU_Name
Supplied parameter

CALL ATBTER1 (TP_Name_Length,
TP_Name,
LU_Name_Length,
LU_Name,
Return_Code

);

Figure 9-6. Invocation of the Register_Test Callable Service

Register_Test

9-18 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v Type: Character string
v Char Set: Type A
v Length: 8 bytes

Specifies the LU where the TP to be registered resides. To specify the base LU
for the transaction scheduler associated with the caller, supply all blanks. The
LU must be associated with a transaction scheduler (that is, you cannot specify
a NOSCHED LU).

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Decimal Value Description

0 Register_Test completed successfully.

4 The request was rejected because a previous test request is
active for the caller’s address space. Only one test request is
permitted per address space at any given time.

8 APPC/MVS is not available.

12 The TP name was either not specified or was invalid.

16 APPC/MVS service failure.

20 The user was not authorized to modify or create a user-level TP
profile.

24 The LU name was not valid.

28 There is an existing APPC conversation in the address space or
conversation resources were not all cleaned up by previous
conversations.

32 There was an error in creating a user level TP profile.

36 APPC test enablement services are unavailable.

40 The LU specified was undefined or was not associated with the
scheduler of this address space, or the specified LU name
contains characters that are not defined to APPC/MVS.

44 LU_name was blank to request the base LU, but no base LU is
defined.

48 An error occurred while Register_Test was trying to add or
modify a TP profile for testing purposes.

50 The specified LU (or the default base LU, if no LU name was
specified) was not associated with any scheduler.

Restrictions
Transaction programs that call the Register_Test service while in task mode should
not have any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the section on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

Register_Test

Chapter 9. APPC/MVS Advanced TP Callable Services 9-19

Reject_Conversation
The Reject_Conversation service rejects an inbound conversation.

A program can call this service to avoid processing a particular inbound
conversation. The caller must supply an appropriate sense code (as an input
parameter) to indicate the reason the conversation was rejected. APPC/MVS
resolves the sense code to a return code that it passes to the partner transaction.

A program cannot reject a conversation if there has been any communication
activity performed on it. After the program has obtained the conversation id (through
the Get_Conversation, Receive_Allocate, or Accept_Conversation service), only the
following conversation services may be called before calling Reject_Conversation:
v Get_Type (ATBGETT)
v Get_Attributes (ATBGETA, ATBGTA2)
v Extract_Conversation_Type (CMECT)
v Extract_Mode_Name (CMEMN)
v Extract_Sync_Level (CMESL)
v Extract_Partner_LU_Name (CMEPLN).

If a program attempts to reject a conversation that has had communication activity,
the Reject_Conversation service returns a return code of
atbcts_request_unsuccessful, and a reason code of atbcts_not_first_conv_call.

For protected conversations:

v The Deallocate_sense_code is ignored when a syncpt conversation is rejected. A
deallocated_abend_svc sense code (X'08640001') is used instead.

v The current UR is put into backout-required state.

v The current UR and subsequent units of recovery for the context will not include
the protected conversation being rejected by this service.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Reject_Conversation

9-20 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Format

Parameters
Notify_type

Supplied parameter
v Type: Structure
v Length: 4-8 bytes

Specifies the type of processing and notification requested for this service
(synchronous or asynchronous). The possible types are:

v None

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeroes.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.

When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the
return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during asynchronous
processing, and the specified ECB is posted when all returned parameters
are set. The completion code field in the ECB contains the return code for
the service. The reason code, if any, is set in the caller’s Reason_code
parameter.

Conversation_id
Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

Deallocate_sense_code
Supplied parameter
v Type: Integer
v Length: 4 bytes

CALL ATBRJC2(
Notify_type,
Conversation_id,
Deallocate_sense_code,
Reason_code,
Return_code

);

Figure 9-7. ATBRJC2 - Reject_Conversation

Reject_Conversation

Chapter 9. APPC/MVS Advanced TP Callable Services 9-21

Deallocate_sense_code specifies the sense code to be sent (as a return code)
to the partner transaction program.

The sense code can be coded as an explicit hexadecimal value or as a
symbolic. Valid values for this parameter are:

Value (hex) Meaning

X'084B6031' Atbcts_TP_Not_Available_Retry

Specifies that the conversation should be abnormally ended
with an indication that the requested TP is not available. The
partner may attempt to retry the request.

X'084C0000' Atbcts_TP_Not_Avail_No_Retry

Specifies that the conversation should be abnormally ended
with an indication that the requested TP is not available. The
partner should not attempt to retry the request.

X'10086021' Atbcts_TPN_Not_Recognized

Specifies that the conversation should be abnormally ended
with an indication that the requested TP name is not
recognized.

X'080F6051' Atbcts_Security_Not_Valid

Specifies that the conversation should be abnormally ended
with an indication that a security violation was detected.

X'10086041' Atbcts_Sync_Lvl_Not_Spprtd_Pgm

Specifies that the conversation should be abnormally ended
with an indication that the specified synchronization level is not
supported.

X'10086034' Atbcts_Conv_type_mismatch

Specifies that the conversation should be abnormally ended
with an indication that the conversation type is not supported.

Reason_code
Returned parameter
v Type: Integer
v Length: 32 bits

Reason_code contains additional information about the result of the call when
the return_code parameter contains a nonzero value other than
atbcts_appc_not_available.

Table 9-2 on page 9-23 lists the valid reason codes.

Return_code
Returned parameter
v Type: Integer
v Length: 32 bits

Return_code specifies the result of the call. If the return_code parameter
contains zero or 64 (decimal), there is no reason code. For other return codes,
check the reason_code parameter for additional information about the result of
the call.

Reject_Conversation

9-22 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

The following table lists the possible return and reason codes, their symbolic
equates, and their meanings, for the Reject_Conversation service.

Table 9-2. Return and Reason Codes for Reject_Conversation

Return
Code
(Decimal)

Reason
Code
(Decimal)

Symbolic and Meaning

0 — atbcts_ok

The service completed as requested.

8 All atbcts_parameter_error

A user-supplied parameter was found to be in error. For
example, a parameter contains characters not in the required
character set. See the reason_code parameter to determine
which parameter is in error.

8 18 atbcts_inval_notify_type

The specified notify type is not valid.

8 22 atbcts_inval_conversation_id

The specified conversation identifier does not represent an
active conversation for this address space.

8 23 atbcts_inval_sense_code

The specified sense code is not valid or not supported.

16 All atbcts_request_unsuccessful

The service was unsuccessful. The cause is most likely a
parameter error other than a syntax error, or an environmental
error. For example, a syntactically valid LU name was
specified, but the LU is not defined to APPC/MVS. An example
of an environmental error is that the caller called the service
while holding locks. See the Reason_code parameter for the
specific cause of the error, and to determine whether the error
can be corrected and the service reissued.

16 8 atbcts_cannot_hold_locks

The caller held one or more locks when calling the service.

16 24 atbcts_not_first_conv_call

Reject_Conversation was called for a conversation that has
already had a communication service issued on it.

16 25 atbcts_not_inbound_conv

The specified conversation is not an inbound conversation.

16 40 atbcts_conv_inaccessible

The specified conversation is currently in use by another
process.

32 All atbcts_service_failure

APPC/MVS service failure. Record the return and reason code,
and give them to your systems programmer, who should
contact the appropriate IBM support personnel.

Reject_Conversation

Chapter 9. APPC/MVS Advanced TP Callable Services 9-23

Table 9-2. Return and Reason Codes for Reject_Conversation (continued)

Return
Code
(Decimal)

Reason
Code
(Decimal)

Symbolic and Meaning

32 16 atbcts_appc_service_failure

The service failed because of an APPC failure.

APPC provides symptom records for this type of error. For
more information, see the appendix that explains return and
reason codes in z/OS MVS Programming: Writing Servers for
APPC/MVS.

64 — atbcts_appc_not_available

APPC/MVS is not currently active. Call the service again after
APPC is available.

Restrictions
Transaction programs that call the Reject_Conversation service while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

Return_Transaction
For a program that was scheduled with a schedule type of multi-trans,
Return_Transaction returns the transaction program execution environment to the
generic shell environment that was established when the transaction program was
initialized. Return_Transaction deallocates any current conversation from a previous
Get_Transaction call with a deallocate Type(Abend). For multi-trans TPs processing
protected conversations, APPC/MVS causes all protected resources updated since
the last commit or backout to be backed out if the multi-trans TP did not issue a
Backout or Commit call prior to calling Return_Transaction for the next incoming
allocate request.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN = SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Reject_Conversation

9-24 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Format

Parameters
Return_code

Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. In
cases where an error code is returned, the program should not examine any
other returned variable associated with the call as nothing is placed in the
variables.

Valid return values for this parameter are:

Decimal Value Description

0 Generic environment restored.

4 Unable to restore generic environment.

12 The APPC transaction scheduler was not active.

16 The calling environment is not valid because:

v The TP is not scheduled as multi-trans

v The TP was not running under the APPC/MVS transaction
scheduler address space

v The calling program was in cross memory mode or SRB
mode when it called the Return_Transaction service.

The caller’s security and job control language (JCL)
environment remain unchanged when the Return_Transaction
service is called.

20 System error.

24 A previous call to the Get_Transaction or Return_Transaction
service from the same address space is still in progress.

The caller’s security and job control language (JCL)
environment remain unchanged when the Return_Transaction
service is called. However, the security and JCL environment
may change when the previous Get_Transaction or
Return_Transaction call ends.

Restrictions
Transaction programs that call the Return_Transaction service while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines

CALL ATBRTRN(
Return_code

);

Figure 9-8. ATBRTRN - Restoring the Generic Environment

Return_Transaction

Chapter 9. APPC/MVS Advanced TP Callable Services 9-25

(FRRs) established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

Set_Conversation_Accounting_Information
Places up to 255 bytes of user-defined data to the accounting record for the
specified conversation (SMF record type 33, subtype 2). The user-defined data, and
its length, is also placed in the buffer that the Extract_Information service returns.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
Notify_type

Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. The possible types are:

v None

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')

CALL ATBSCA2(
Notify_type,
Conversation_id,
User_accounting_data_length,
User_accounting_data,
Reason_code,
Return_code

);

Figure 9-9. ATBSCA2 - Set_Conversation_Accounting_Information

Return_Transaction

9-26 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.

When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the
return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during asynchronous
processing, and the specified ECB is posted when all returned parameters
are set. The completion code field in the ECB contains the return code for
the service. The reason code, if any, is set in the caller’s Reason_code
parameter.

Conversation_id
Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

User_accounting_data_length
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits
v Range: 0-255

User_accounting_data_length specifies the length of data contained in the
User_accounting_data parameter.

If zero is specified for this parameter, any previously written user accounting
data is removed from this conversation’s accounting record.

User_accounting_data
Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 0-255 bytes

User_accounting_data specifies user-defined data to be placed in the SMF
accounting record for this conversation.

Reason_code
Returned parameter
v Type: Integer
v Length: 32 bits

Reason_code contains additional information about the result of the call when
the return_code parameter contains a nonzero value other than
atbcts_appc_not_available.

Table 9-3 on page 9-28 lists the valid reason codes.

Return_code
Returned parameter
v Type: Integer
v Length: 32 bits

Set_Conversation_Accounting_Information

Chapter 9. APPC/MVS Advanced TP Callable Services 9-27

Return_code specifies the result of the call. If the return_code parameter
contains zero or 64 (decimal), there is no reason code. For other return codes,
check the reason_code parameter for additional information about the result of
the call.

The following table lists the possible return and reason codes, their symbolic
equates, and their meanings, for the Set_Conversation_Accounting_Information
service.

Table 9-3. Return and Reason Codes for Set_Conversation_Accounting_Information

Return
Code
(Decimal)

Reason
Code
(Decimal)

Symbolic and Meaning

0 — atbcts_ok

The service completed as requested.

8 All atbcts_parameter_error

A user-supplied parameter was found to be in error. For example,
a parameter contains characters not in the required character set.
See the reason_code parameter to determine which parameter is
in error.

8 18 atbcts_inval_notify_type

The specified notify type is not valid.

8 22 atbcts_inval_conversation_id

The specified conversation identifier does not represent an active
conversation for this address space.

8 35 atbcts_inval_acct_data_length

The specified accounting data field length is outside the allowable
range.

16 All atbcts_request_unsuccessful

The service was unsuccessful. The cause is most likely a
parameter error other than a syntax error, or an environmental
error. For example, a syntactically valid LU name was specified,
but the LU is not defined to APPC/MVS. An example of an
environmental error is that the caller called the service while
holding locks. See the Reason_code parameter for the specific
cause of the error, and to determine whether the error can be
corrected and the service reissued.

16 8 atbcts_cannot_hold_locks

The caller held one or more locks when calling the service.

16 40 atbcts_conv_inaccessible

The specified conversation is currently in use by another process.

32 All atbcts_service_failure

APPC/MVS service failure. Record the return and reason code,
and give them to your systems programmer, who should contact
the appropriate IBM support personnel.

Set_Conversation_Accounting_Information

9-28 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table 9-3. Return and Reason Codes for
Set_Conversation_Accounting_Information (continued)

Return
Code
(Decimal)

Reason
Code
(Decimal)

Symbolic and Meaning

32 16 atbcts_appc_service_failure

The service failed because of an APPC failure.

APPC provides symptom records for this type of error. For more
information, see the appendix that explains return and reason
codes in z/OS MVS Programming: Writing Servers for APPC/MVS.

64 — atbcts_appc_not_available

APPC/MVS is not currently active. Call the service again after
APPC is available.

Restrictions
Transaction programs that call the Set_Conversation_Accounting_Information
service while in task mode should not have any enabled unlocked task (EUT)
functional recovery routines (FRRs) established. For more information about EUT
FRRs, see the section on providing recovery in z/OS MVS Programming:
Authorized Assembler Services Guide.

Unregister_Test
The Unregister_Test service cancels an outstanding TP test request before the test
begins. You can call this service after calling Register_Test or Accept_Test. This
service is useful if you change your mind about performing the test or are unable to
initiate an inbound allocate request for the TP.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL ATBTEU1 (Return_To_Program,
ASCB_address,
Return_code

);

Figure 9-10. Invocation of the Unregister_Test Callable Service

Set_Conversation_Accounting_Information

Chapter 9. APPC/MVS Advanced TP Callable Services 9-29

Parameters
Return_to_program

Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Specifies whether to return control to the program that called Register_Test. It
has two possible values:

Value Description

0 No - specifies that control not be returned to the program that called
Register_Test.

1 Yes - specifies that control be returned to the program that called
Register_Test.

ASCB_address
Supplied parameter
v Type: Pointer
v Char Set: N/A
v Length: 4 bytes

Specifies the pointer to the address space control block (ASCB) that represents
the address space for which the Unregister_Test service should cancel the
pending test request. Only programs with PSW key 0-7 can use this parameter.
Problem programs (key 8) can only cancel test requests for their own address
spaces and should pass a null pointer (X‘00000000’) or a pointer to their own
address space.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Possible values from the Unregister_Test service are:

Decimal Value Description

0 Unregister_Test service completed successfully.

4 No active test request was found for the address space.

8 APPC/MVS is not available.

12 Problem state program supplied the address of an ASCB other
than its own.

16 APPC/MVS service failure.

20 Value of Return_to_program parameter was not valid.

Restrictions
Transaction programs that call the Unregister_Test service while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

Unregister_Test

9-30 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Version_Service
Version_Service returns the highest version of the APPC/MVS callable services that
is currently available on the system. Available services are those with a version
number that is equal to or between the version number where the service was
introduced and the version number returned from the Version_Service.

Example
The following example explains the versioning of APPC/MVS callable services:

v Assume that the ATBxxx1 service was introduced in release A (the first release
using this versioning scheme). The invocation of ATBxxx1 expects an
Unidentify_type and a return code parameter.

v In the next release (release B) a new parameter is added to form the ATBxxx2
service. The invocation of the new service expects only a return code parameter.

v In the following release (release C), a new parameter is added to the ATBxxx2
service to form the ATBxxx3 service. No changes are made to the ATBxxx1 and
ATBxxx2 services.

The following table shows how a call to the Version_Service returns callable service
version numbers for the Get_Attributes service:

Table 9-4. Example Values Returned by the Version_Service

Current Version Value Returned Services Available

0 (MVS/ESA SP 4.2.0) N/A (See note 1) ATBGETA

1 (MVS/ESA SP 4.2.2) 1 ATBGETA

2 (MVS/ESA SP 4.3.0) 2 ATBGETA, ATBGTA2

3 (MVS/ESA SP 5.1.0) 3 ATBGETA, ATBGTA2

4 (OS/390 V1R3) 4 or 5 (See Note 2) ATBGETA, ATBGTA2

5 (OS/390 V2R8) 5 ATBGETA, ATBGTA2

Note:

1. The Version_Service was not available in MVS/ESA SP 4.2.0.

2. If APAR OW33764 is installed, then the Version_Service will return a
value of 5. Otherwise, a value of 4 will be returned.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Any
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.

Version_Service

Chapter 9. APPC/MVS Advanced TP Callable Services 9-31

Format

Parameters
Callable_Service_Version_Number

Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

The highest version of all APPC/MVS callable services currently available on
the system.

Return_Code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Valid values for this parameter are:

Decimal Value Description

0 The Version_Service successfully returned the version number.

48 A service failure occurred.

Restrictions
Transaction programs that call Version_Service while in task mode should not have
any enabled unlocked task (EUT) functional recovery routines (FRRs) established.
For more information about EUT FRRs, see the section on providing recovery in
z/OS MVS Programming: Authorized Assembler Services Guide.

CALL ATBVERS(
Callable_Service_Version_Number,
Return_Code,

);

Figure 9-11. ATBVERS - Callable Service Version Service

Version_Service

9-32 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Chapter 10. API Trace Facility Messages

This chapter complements the application programming interface (API) trace
information presented in “Chapter 6. Diagnosing Problems with APPC/MVS TPs” on
page 6-1. Messages for the API trace facility:

v Report ATBTRACE REXX exec syntax or processing errors

v Report the status of tracing activity

v Illustrate conversation data written to the trace data set.

These messages are either returned to the issuer of the ATBTRACE REXX exec, or
written to the trace data set. Additional messages related to the API trace facility
appear on the operator console; these messages are documented in z/OS MVS
System Messages, Vol 3 (ASB-BPX).

ATB60001I ATBTRACE SYNTAX ERROR:
UNEXPECTED TEXT “ text” FOUND
INSTEAD OF START, STOP, OR LIST

Explanation: On an ATBTRACE request, the system
found text where it expected to find a valid ATBTRACE
function. Valid functions are START, STOP, and LIST.

In the message text:

text The text found on the ATBTRACE request
where START, STOP, or LIST was expected.

System Action: The system rejects the request.

Application Programmer Response: Correct the
syntax of the ATBTRACE request by specifying START,
STOP, or LIST, and re-issue the request.

Detecting Module:
ATBVSTM, ATBTRACE exec

ATB60002I ATBTRACE SYNTAX ERROR:
UNEXPECTED TEXT “ text” FOUND
INSTEAD OF A VALID KEYWORD

Explanation: On an ATBTRACE request, the system
found text where it expected to find a valid keyword.

In the message text:

text The text found on the ATBTRACE request
where a keyword was expected.

System Action: The system rejects the request.

Application Programmer Response: Correct the
syntax of the ATBTRACE request, and re-issue it.

Detecting Module:
ATBTRACE exec

ATB60003I ATBTRACE SYNTAX ERROR:
PARENTHESIS IS MISSING AFTER
TEXT “ text”

Explanation: On an ATBTRACE request, the system
did not find an opening or closing parenthesis before or
after a keyword value.

In the message text:

text The keyword value that was found without
either an opening or closing parenthesis.

System Action: The system rejects the request.

Application Programmer Response: Correct the
syntax of the ATBTRACE request, and re-issue it.

Detecting Module:
ATBTRACE exec

ATB60004I ATBTRACE SYNTAX ERROR: THE LU
KEYWORD AND VALUE ARE
REQUIRED FOR A START REQUEST

Explanation: On an ATBTRACE request, the system
could not find the LU keyword. Both the keyword and its
value, an LU name, are required for a START request.

System Action: The system rejects the request.

Application Programmer Response: Make sure the
ATBTRACE request contains both the LU keyword and
value, and re-issue the request.

Detecting Module:
ATBTRACE exec

ATB60005I ATBTRACE SYNTAX ERROR: THE TP
KEYWORD AND VALUE ARE
REQUIRED FOR A START REQUEST

Explanation: On an ATBTRACE request, the system
could not find the TP keyword. Both the keyword and its

© Copyright IBM Corp. 1991, 2001 10-1

value, a transaction program (TP) name, are required
for a START request.

System Action: The system rejects the request.

Application Programmer Response: Make sure the
ATBTRACE request contains both the TP keyword and
value, and re-issue the request.

Detecting Module:
ATBTRACE exec

ATB60006I ATBTRACE SYNTAX ERROR: THE
DATASET KEYWORD AND VALUE ARE
REQUIRED FOR A START OR STOP
REQUEST

Explanation: On an ATBTRACE request, the system
could not find the DATASET keyword (or the accepted
keyword abbreviations DSNAME, DA, DSN, or DS).
Both the keyword and its value, a data set name, are
required for a START or STOP request.

System Action: The system rejects the request.

Application Programmer Response: Make sure the
ATBTRACE request contains both the DATASET
keyword (or accepted abbreviation) and value, and
re-issue the request.

Detecting Module:
ATBTRACE exec

ATB60007I ATBTRACE SYNTAX ERROR: THE
SYMDEST KEYWORD IS MUTUALLY
EXCLUSIVE WITH THE LU AND TP
KEYWORDS

Explanation: On an ATBTRACE request, the system
found the SYMDEST keyword specified with the LU or
TP keyword, or both. You may specify either the
SYMDEST keyword or the combination of both LU and
TP.

System Action: The system rejects the request.

Application Programmer Response: Correct the
ATBTRACE request to specify either SYMDEST or LU
with TP, and re-issue the request.

Detecting Module:
ATBTRACE exec

ATB60008I ATBTRACE SYNTAX ERROR: THE
USERID AND SECNONE KEYWORDS
ARE MUTUALLY EXCLUSIVE

Explanation: On an ATBTRACE request, the system
found both the USERID and SECNONE keywords
specified. You may specify either USERID or
SECNONE, but not both.

System Action: The system rejects the request.

Application Programmer Response: Correct the
ATBTRACE request to specify either USERID or
SECNONE, and re-issue the request.

Detecting Module:
ATBTRACE exec

ATB60009I ATBTRACE SYNTAX ERROR: THE LU
KEYWORD VALUE IS MISSING OR
TOO LONG

Explanation: On an ATBTRACE request, the LU
keyword value was either missing or too long. A network
LU name cannot be greater than 8 characters. The total
length of a network-qualified LU name cannot be
greater than 17 characters in length (that is, the network
ID and the network LU name, concatenated by a period,
cannot exceed 17 characters).

System Action: The system rejects the request.

Application Programmer Response: Specify a
correct LU name on the ATBTRACE request, and
re-issue it.

Detecting Module:
ATBTRACE exec

ATB60010I ATBTRACE SYNTAX ERROR: THE TP
KEYWORD VALUE IS MISSING OR
TOO LONG

Explanation: On an ATBTRACE request, the TP
keyword value was either missing or too long. The
transaction program name cannot be greater than 64
characters.

System Action: The system rejects the request.

Application Programmer Response: Specify a
correct TP name on the ATBTRACE request, and
re-issue it.

Detecting Module:
ATBTRACE exec

ATB60011I ATBTRACE SYNTAX ERROR: THE
SYMDEST KEYWORD VALUE IS
MISSING OR TOO LONG

Explanation: On an ATBTRACE request, the
SYMDEST keyword value was either missing or too
long. The symbolic destination name cannot be greater
than 8 characters.

System Action: The system rejects the request.

Application Programmer Response: Specify a
correct symbolic destination name on the ATBTRACE

10-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

request, and re-issue it.

Detecting Module:
ATBTRACE exec

ATB60012I ATBTRACE SYNTAX ERROR: THE
USERID KEYWORD VALUE IS MISSING
OR TOO LONG

Explanation: On an ATBTRACE request, the USERID
keyword value was missing or too long. The user ID
cannot be greater than 10 characters.

System Action: The system rejects the request.

Application Programmer Response: Specify a
correct user ID on the ATBTRACE request, and re-issue
it.

Detecting Module:
ATBTRACE exec

ATB60013I ATBTRACE SYNTAX ERROR: THE
DATASET KEYWORD VALUE IS
MISSING OR TOO LONG

Explanation: On an ATBTRACE request, the
DATASET keyword value was either missing or too long.
The data set name cannot be greater than a total of 44
characters.

System Action: The system rejects the request.

Application Programmer Response: Specify a
correct data set name on the ATBTRACE request, and
re-issue it.

Detecting Module:
ATBTRACE exec

ATB60014I ATBTRACE SYNTAX ERROR:
CHARACTERS IN TP KEYWORD
VALUE “ tp_name” ARE NOT VALID

Explanation: On an ATBTRACE request, the TP
keyword value contains one or more characters that are
not from character set 00640.

In the message text:

tp_name
The incorrect TP name specified on the
ATBTRACE request

System Action: The system rejects the request.

Application Programmer Response: Correct the TP
name on the ATBTRACE request, and re-issue it.

Detecting Module:
ATBVSTM

ATB60015I ATBTRACE SYNTAX ERROR: THE LU
KEYWORD VALUE “ lu_name” IS NOT
VALID

Explanation: On an ATBTRACE request, the LU
keyword value either:

v Contains one or more characters that are not from
character set 00640 or the Type A character set, or

v Consists of a network ID and a network LU name,
one of which is greater than 8 characters or contains
one or more characters that are not from character
set 00640.

In the message text:

lu_name
The incorrect LU name specified on the
ATBTRACE request

System Action: The system rejects the request.

Application Programmer Response: Correct the LU
name on the ATBTRACE request, and re-issue it.

Detecting Module:
ATBVSTM, ATBTRACE exec

ATB60016I ATBTRACE SYNTAX ERROR:
CHARACTERS IN USERID KEYWORD
VALUE “ userid” ARE NOT VALID

Explanation: On an ATBTRACE request, the USERID
keyword value contains one or more characters that are
not from the Type A character set.

In the message text:

userid The incorrect user ID specified on the
ATBTRACE request

System Action: The system rejects the request.

Application Programmer Response: Correct the user
ID on the ATBTRACE request, and re-issue it.

Detecting Module:
ATBVSTM

ATB60017I ATBTRACE SYNTAX ERROR: THE
DATASET KEYWORD VALUE “ dsname”
IS NOT VALID

Explanation: On an ATBTRACE request, the
DATASET keyword value does not meet all the syntax
requirements for the data set name. If necessary, refer
to z/OS TSO/E User’s Guide for data set naming rules
and conventions.

In the message text:

dsname
The incorrect data set name specified on the
ATBTRACE request

Chapter 10. API Trace Facility Messages 10-3

System Action: The system rejects the request.

Application Programmer Response: Correct the data
set name on the ATBTRACE request, and re-issue it.

Detecting Module:
ATBVSTM

ATB60018I ATBTRACE SYNTAX ERROR:
CHARACTERS IN SYMDEST
KEYWORD VALUE “ sym_dest_name”
ARE NOT VALID

Explanation: On an ATBTRACE request, the
SYMDEST keyword value contains one or more
characters that are not from the Type A character set.

In the message text:

sym_dest_name
The incorrect symbolic destination name
specified on the ATBTRACE request

System Action: The system rejects the request.

Application Programmer Response: Correct the
symbolic destination name on the ATBTRACE request,
and re-issue it.

Detecting Module:
ATBVSTM

ATB60019I ATBTRACE SYNTAX ERROR:
MISMATCHED QUOTES IN DATASET
KEYWORD VALUE “ dsname”

Explanation: On an ATBTRACE request, the
DATASET keyword value was not enclosed in single
quotes. A fully qualified data set name must begin and
end with a single quote.

In the message text:

dsname
The keyword value that was found with
mismatched quotes.

System Action: The system rejects the request.

Application Programmer Response: Correct the data
set name on the ATBTRACE request, and re-issue it.

Detecting Module:
ATBTRACE exec

ATB60020I ATBTRACE REQUEST
UNSUCCESSFUL: APPC/MVS TRACE
ROUTINE NOT FOUND

Explanation: The system could not locate the
APPC/MVS trace routine that processes ATBTRACE
requests.

System Action: The system rejects the request.

Application Programmer Response: Contact your
system programmer to diagnose the problem.

Security Administrator Response: Make sure that
the application is running on an OS/390 V1R3 (or later)
system. If so, make sure that the APPC/MVS load
module ATBVSTSS is in SYS1.LPALIB.

Detecting Module:
ATBTRACE exec

ATB60021I ATBTRACE REQUEST
UNSUCCESSFUL: INTERNAL SYSTEM
ERROR IN ATBTRACE PROCESSING,
RETURN CODE return_code

Explanation: The system encountered an internal
error while processing an ATBTRACE request.
Depending on the ATBTRACE processing that was in
progress when the error occurred, the trace data set
might contain trace data; if so, that data might be
unusable.

In the message text:

return code
The return code for the internal error

System Action: The system terminates ATBTRACE
processing.

Application Programmer Response: Contact your
system programmer to diagnose the problem.

Security Administrator Response: Search problem
reporting databases for a fix for the problem. If no fix
exists, contact the IBM Support Center, and provide the
return code and the SVC dump, if one is available.

Detecting Module:
ATBTRACE exec

ATB60022I ATBTRACE REQUEST
UNSUCCESSFUL: APPC/MVS TRACE
ROUTINE IS NOT AVAILABLE
BECAUSE OF PREVIOUS INTERNAL
ERROR

Explanation: An ATBTRACE request was invoked on
a system on which the APPC/MVS trace routine is no
longer active, because it previously encountered a
non-retryable internal error.

System Action: The system rejects the request.

Application Programmer Response: Contact your
system programmer to determine whether to start
tracing activity on another system, or restart tracing
activity on this system.

Operator Response: At the request of the system

10-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

programmer, bring down and restart the APPC address
space.

Security Administrator Response: If you absolutely
must have application program interface (API) tracing
capability on this system, ask the operator to bring
down and restart the APPC address space.

Detecting Module:
ATBVSTS

ATB60023I ATBTRACE START UNSUCCESSFUL:
DYNAMIC ALLOCATION OF DATA SET
dsname FAILED

Explanation: The system could not dynamically
allocate the trace data set. A message with prefix IEC,
IGD, or IKJ further explains the dynamic allocation error.

In the message text:

dsname
The data set name specified on the
ATBTRACE request

System Action: The system rejects the request.

Application Programmer Response: To correct the
problem, follow the instructions for the accompanying
IEC, IGD, or IKJ message.

Detecting Module:
ATBVSTW

ATB60024I ATBTRACE STOP REQUEST IS
QUEUED FOR COMPLETION

Explanation: The system could not complete the stop
request because of large number of API trace record yet
to be written or because of I/O contention. You will not
be able to view the trace data set until the trace stop
request is completed by the system.

System Action: The system partially completes the
request.

Application Programmer Response: Issue an
ATBTRACE LIST request specifying the data set name
you specified on the STOP request. If the STOP request
is completed by the system, ATB60034I message will be
returned. You can view the trace data set now. If the
STOP request is not complete, system will return
ATB60047I message.

Detecting Module:
ATBVSTE

ATB60026I ATBTRACE NOT AVAILABLE: THE
APPC ADDRESS SPACE IS NOT
ACTIVE

Explanation: An ATBTRACE request was invoked on
a system on which the APPC address space is not
active.

System Action: The system rejects the request.

Application Programmer Response: Contact your
system programmer to determine whether the APPC
address space should be active on this system.

Operator Response: At the request of the system
programmer, restart APPC on this system.

Security Administrator Response: Determine
whether the APPC address space should be active on
this system. If so, ask the operator to restart APPC.

Detecting Module:
ATBVSTS, ATBVSTT

ATB60027I ATBTRACE START UNSUCCESSFUL:
YOU ARE NOT AUTHORIZED TO
START THE TRACE ASSOCIATED
WITH LU lu_name AND TP tp_name

Explanation: The issuer of the ATBTRACE START
request does not have authorization to start a trace for
this LU and TP combination.

In the message text:

lu_name
The LU name specified on the ATBTRACE
request

tp_name
The TP name specified on the ATBTRACE
request

System Action: The system rejects the request.

Application Programmer Response: If you should
have authority to trace this LU and TP, check with your
security administrator. Once you have the proper
authorization, re-issue the request.

Security Administrator Response: Issue the
appropriate security product command to authorize the
user to trace this LU and TP. See z/OS MVS Planning:
APPC/MVS Management for more information on
security requirements.

Detecting Module:
ATBVSTM

Chapter 10. API Trace Facility Messages 10-5

ATB60028I ATBTRACE START UNSUCCESSFUL:
THE ACTIVE SIDE INFORMATION DATA
SET DOES NOT CONTAIN AN ENTRY
FOR sym_dest_name

Explanation: The SYMDEST keyword value on an
ATBTRACE request does not correspond to an entry in
the active side information data set.

In the message text:

sym_dest_name
The symbolic destination name specified on
the ATBTRACE request

System Action: The system rejects the request.

Application Programmer Response: If you specified
a valid symbolic destination name as the SYMDEST
keyword value, ask the system programmer to add the
name to the active side information data set. Otherwise,
correct the symbolic destination name, and re-issue the
request.

Security Administrator Response: Determine
whether this symbolic destination name should be
defined in the active side information data set.

Detecting Module:
ATBSD1G

ATB60029I ATBTRACE START UNSUCCESSFUL:
DYNAMIC ALLOCATION OF DATA SET
dsname FAILED – RETURN CODE
retcode ERROR REASON CODE rsncode

Explanation: The system could not dynamically
allocate the trace data set, and could not issue a
message that further explains the error.

In the message text:

dsname
The data set name specified on the
ATBTRACE request

retcode The return code from dynamic allocation.

rsncode
The error reason code from dynamic allocation.

System Action: The system rejects the request.

Application Programmer Response: To correct the
problem, follow the instructions in z/OS MVS
Programming: Authorized Assembler Services Guide for
the dynamic allocation return and error reason code
combination.

Detecting Module:
ATBVSTW

ATB60030I ATBTRACE START UNSUCCESSFUL:
userid DOES NOT HAVE UPDATE
ACCESS TO DATA SET dsname

Explanation: The issuer of the ATBTRACE START
request does not have update access to the data set
specified on ATBTRACE request.

In the message text:

userid The user ID under which the ATBTRACE
START request was issued.

dsname
The data set name specified on the
ATBTRACE START request

System Action: The system rejects the request.

Application Programmer Response: On the
ATBTRACE request, specify the name of a data set to
which you have update access, and re-issue the
request.

Detecting Module:
ATBVSTW

ATB60031I ATBTRACE STOP UNSUCCESSFUL:
YOU ARE NOT AUTHORIZED TO STOP
THE TRACE ASSOCIATED WITH LU
lu_name AND TP tp_name

Explanation: The issuer of the ATBTRACE STOP
request does not have authorization to stop a trace for
this LU and TP combination.

In the message text:

lu_name
The name of the LU associated with this
ATBTRACE request

tp_name
The name of the TP associated with this
ATBTRACE request

System Action: The system rejects the request.

Application Programmer Response: Make sure you
specified the correct data set name on the ATBTRACE
request. If you should have authority to stop the trace
associated with this LU and TP combination, check with
your security administrator. (If the data set specified on
the STOP request has active traces for additional LU/TP
combinations, make sure you have authority to stop
those LU/TP combinations as well, or the system might
issue this message again after you re-issue the
request.) Once you have the proper authorization,
re-issue the request.

Security Administrator Response: Issue the
appropriate security product command to authorize the
user to trace this LU and TP. See z/OS MVS Planning:
APPC/MVS Management for more information on
security requirements.

10-6 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Detecting Module:
ATBVSTM

ATB60032I ATBTRACE START UNSUCCESSFUL:
AN ATBTRACE STOP REQUEST IS
PENDING FOR DATA SET dsname

Explanation: ATBTRACE was invoked to start a trace,
but the system is still processing an ATBTRACE STOP
request that was already issued for the data set
specified on the START request.

In the message text:

dsname
The data set specified on the ATBTRACE
requests.

System Action: The system rejects the request.

Application Programmer Response: Issue an
ATBTRACE LIST request, specifying the data set name
you specified on the START request. When the system
returns message ATB60034I, you can re-issue the
START request.

Detecting Module:
ATBVSTT

ATB60033I ATBTRACE STOP UNSUCCESSFUL:
NO API TRACES ARE ACTIVE FOR
DATA SET dsname

Explanation: ATBTRACE was invoked to stop an
application program interface (API) trace, but no trace is
active for the specified data set, or the trace is already
being stopped.

In the message text:

dsname
The data set specified on the ATBTRACE
STOP request.

System Action: The system rejects the request.

Application Programmer Response: Determine
whether the trace was already stopped, or was ever
started, and take appropriate action.

Detecting Module:
ATBVSTM

ATB60034I NO API TRACES ARE ACTIVE

Explanation: ATBTRACE was invoked to list any
active application program interface (API) traces, but no
traces are active on this system, or no traces are active
for the data set specified on the ATBTRACE LIST
request.

System Action: The system processes the

ATBTRACE request by returning this message; no list is
produced because no traces are active.

Application Programmer Response: Determine
whether an ATBTRACE START was ever requested for
the specified data set, or for any data set for this
system, and take appropriate action.

Detecting Module:
ATBVSTL

ATB60035I ATBTRACE START WAS SUCCESSFUL

Explanation: The system successfully processed an
ATBTRACE START request.

System Action: The system will collect trace data as
instructed by the keyword values specified on the
ATBTRACE request.

Application Programmer Response: None.

Detecting Module:
ATBTRACE exec

ATB60036I ATBTRACE STOP WAS SUCCESSFUL

Explanation: The system successfully processed an
ATBTRACE STOP request.

System Action: The system stops collecting any
further trace data for the data set specified on the
ATBTRACE request.

Application Programmer Response: None.

Detecting Module:
ATBTRACE exec

ATB60037I ATBTRACE REQUEST
UNSUCCESSFUL: APPC/MVS
PROCESSING ENCOUNTERED
INTERNAL ERROR RETURN CODE
retcode REASON CODE rsncode

Explanation: APPC/MVS encountered an internal
error while processing an ATBTRACE START, STOP, or
LIST request. Depending on the ATBTRACE processing
that was in progress when the error occurred, the trace
data set might contain trace data; if so, that data might
be unusable.

In the message text:

retcode 4-byte internal error return code.

rsncode
12-byte internal error reason code.

System Action: The system terminates ATBTRACE
processing.

Application Programmer Response: Contact your

Chapter 10. API Trace Facility Messages 10-7

system programmer to diagnose the problem.

Security Administrator Response: Search problem
reporting databases for a fix for the problem. If no fix
exists, contact the IBM Support Center, and provide the
return and reason codes and the SVC dump, if one is
available.

Detecting Module:
ATBVSTB, ATBVSTE, ATBVSTL,
ATBVSTM, ATBVSTT, ATBVSTW

ATB60038I ATBTRACE START UNSUCCESSFUL:
THE MAXIMUM NUMBER OF API
TRACE DATA SETS IS ALREADY IN
USE

Explanation: When processing an ATBTRACE START
request, the system determined that it was already
collecting trace data in the maximum number of
application program interface (API) trace data sets. The
maximum is 50.

System Action: The system rejects the request.

Application Programmer Response: Issue
ATBTRACE LIST without specifying any data set name,
and examine the resulting list of active traces. If a
STOP request is pending for a data set, you can issue
the LIST request again, specifying the data set for
which the STOP is in progress. When the system
returns message ATB60034I, you can re-issue the
START request.

If no STOP requests are in progress, examine the list
for any active traces that aren’t required any more. You
can issue an ATBTRACE STOP for the data set
associated with those traces, and re-issue the
ATBTRACE START request. Keep in mind that issuing
an ATBTRACE STOP stops all active traces to the data
set specified on the STOP request.

Detecting Module:
ATBVSTT

ATB60039I ATBTRACE REQUEST
UNSUCCESSFUL: THE REQUEST WAS
ISSUED WHILE IN SRB MODE

Explanation: An ATBTRACE START, STOP, or LIST
request was invoked from a program that is running in
service request block (SRB) mode. An ATBTRACE
request cannot be issued from an SRB.

System Action: The system rejects the request.

Application Programmer Response: Make sure any
ATBTRACE request is issued from a program that is
running in task mode. For example, if you want to leave
the ATBTRACE request in the same program, you’ll
have to use a method other than the SCHEDULE or
IEAMSCHD macro to run that program.

Detecting Module:
ATBVSTM

ATB60040I ATBTRACE REQUEST
UNSUCCESSFUL: THE REQUEST WAS
ISSUED WHILE HOLDING LOCKS

Explanation: An ATBTRACE START, STOP, or LIST
request was invoked from a program that was holding
one or more locks. An ATBTRACE request cannot be
issued from a program while it is holding any lock.

System Action: The system rejects the request.

Application Programmer Response: Make sure your
program is not holding any locks when it issues an
ATBTRACE request; then re-run the program.

Detecting Module:
ATBVSTM

ATB60041I ATBTRACE REQUEST
UNSUCCESSFUL: THE REQUEST WAS
ISSUED WHILE IN CROSS MEMORY
MODE

Explanation: An ATBTRACE START, STOP, or LIST
request was invoked from a program that was in cross
memory mode. An ATBTRACE request cannot be
issued from a program while its home and primary
address spaces are not the same.

System Action: The system rejects the request.

Application Programmer Response: Make sure your
program’s home and primary address spaces are the
same when it issues an ATBTRACE request. (The
secondary address space does not have to be the
same as the home and primary address spaces.) Then
re-run the program.

Detecting Module:
ATBVSTM

ATB60042I ATBTRACE LIST IS COMPLETE

Explanation: All the information about active traces
has been listed for a specific ATBTRACE LIST request.
This message appears at the end of the trace
information.

System Action: The system continues processing.

Application Programmer Response: None.

Detecting Module:
ATBTRACE exec

10-8 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

ATB60043I ATBTRACE START UNSUCCESSFUL:
TRACE DATA SET dsname ALREADY IN
USE BY user FOR API TRACES

Explanation: The issuer of an ATBTRACE START
request specified the name of a data set that is already
in use for application program interface (API) tracing by
a different user. Only one user at a time can use the
trace data set for an API trace.

In the message text:

dsname
The data set specified on the ATBTRACE
START request.

user The user ID under which the first ATBTRACE
START request was issued for this data set.
Additional ATBTRACE START requests for this
data set can be issued only under this user ID.

System Action: The system rejects the request.

Application Programmer Response: Re-issue the
ATBTRACE START with a different data set name or, if
you have authority to do so, re-issue the ATBTRACE
START from the user ID indicated by this message.

Detecting Module:
ATBVSTT

ATB60044I ATBTRACE START UNSUCCESSFUL:
TRACE DATA SET dsname IS NOT
USABLE

Explanation: On an ATBTRACE START request, the
user specified a data set that the system cannot use.

In the message text:

dsname
The data set specified on the ATBTRACE
START request.

System Action: The system rejects the request, and
issues a message with prefix AHL to further explain the
error.

Application Programmer Response: Follow the
instructions for the AHL message to correct the error,
and re-issue the ATBTRACE START request.

Detecting Module:
ATBVSTW

ATB60045I ATBTRACE REQUEST
UNSUCCESSFUL: TRACE DATA SET
dsname IS NOT SEQUENTIAL

Explanation: The issuer of an ATBTRACE START
request specified the name of a partitioned data set
(PDS or PDSE). The data set for application program
interface (API) trace data must be sequential.

In the message text:

dsname
The data set specified on the ATBTRACE
START request.

System Action: The system rejects the request.

Application Programmer Response: Re-issue the
ATBTRACE START with a different data set name.

Detecting Module:
ATBVSTW, ATBTRACE exec

ATB60046I LIST OF ACTIVE API TRACES FOR
DATA SET dsname IN USE BY user API
TRACE WAS STARTED AT mm/dd/yyyy
hh:mm:ss.nnnnnn FOR:

LU: lu_name
TP: tp_name
SYMDEST: {sym_dest_name|N/A}

{USERID: { userid|*} | SECNONE}

Explanation: For an ATBTRACE LIST request, the
system displays active application program interface
(API) traces. If a data set name was specified on the
request, the system displays only those active traces
associated with the data set. The text beginning with
“API TRACE WAS STARTED...” and the subsequent
information is repeated for each trace (that is, repeated
as many times as the system wrote message
ATB60051I to the data set for an ATBTRACE START
request).

If a data set name was not specified, the system
displays the entire message for each active API trace
data set on the system, repeating the text beginning
with “API TRACE WAS STARTED...” for each trace
associated with each data set.

In the message text:

dsname
The name of a data set containing trace data.

user The user ID under which the ATBTRACE
START request was issued for this data set.

mm/dd/yyyy hh:mm:ss.nnnnnn
The month, date, year, hour, minute, second,
and microsecond at which APPC/MVS
processed the ATBTRACE START request for
the API trace. The time is local time.

lu_name
The name of the logical unit (LU) associated
with a currently active trace.

tp_name
The name of the transaction program (TP)
associated with a currently active trace.

sym_dest_name
The symbolic destination name associated with

Chapter 10. API Trace Facility Messages 10-9

a currently active trace. If the ATBTRACE
START request specified a value for the
SYMDEST keyword, that value is displayed for
sym_dest_name, and the LU and TP values
represented by sym_dest_name also appear
for lu_name and tp_name, respectively. If the
START request did not specify the SYMDEST
keyword and value (that is, the LU and TP
keywords and values were specified), “N/A”
appears to indicate that sym_dest_name does
not apply.

userid The user ID associated with a currently active
trace. If the ATBTRACE START request did not
specify a USERID keyword and value, an
asterisk (*) appears for userid; if the START
request specified the SECNONE keyword
instead of the USERID keyword and value,
SECNONE appears instead of USERID.

System Action: The system continues processing.

Application Programmer Response: None.

Detecting Module:
ATBVSTM

ATB60047I ATBTRACE STOP IS IN PROGRESS
FOR DATA SET dsname

Explanation: An ATBTRACE LIST request was issued
when APPC/MVS is still processing an ATBTRACE
STOP request. In this case, the system does not
include any application program interface (API) trace
information for this data set in the output resulting from
the ATBTRACE LIST request. If the ATBTRACE LIST
request did not specify a data set name, this message
is repeated for each data set for which an ATBTRACE
STOP request is still in progress.

In the message text:

dsname
The name of a data set containing trace data.

System Action: The system continues processing.

Application Programmer Response: None.

Detecting Module:
ATBVSTM

ATB60048I ATBTRACE STOP WAS SUCCESSFUL,
BUT AN ERROR ENCOUNTERED
WHILE CLOSING THE DATA SET
MIGHT HAVE CAUSED TRACE DATA
TO BE LOST

Explanation: The system successfully processed an
ATBTRACE STOP request; however, the system
encountered an error while closing the data set.
Because of the error, trace data might have been lost.

System Action: The system stops collecting any
further trace data for the data set specified on the
ATBTRACE request.

Application Programmer Response: None.

Detecting Module:
ATBVSTW

ATB60049I API TRACE WAS STARTED AT
mm/dd/yyyy hh:mm:ss.nnnnnn FOR:

LU: lu_name
TP: tp_name
SYMDEST: {sym_dest_name|N/A}
SECNONE

Explanation: For ATBTRACE START requests for a
particular data set, the system writes this message to
the data set for each unique combination of LU and TP
keyword values, with the SECNONE keyword. (If you
specify the SYMDEST keyword instead of LU and TP,
the system resolves the SYMDEST keyword value to
actual LU and TP values before determining whether
the START request specifies a unique LU/TP
combination.)

If you issue a START request that is identical to a
previous START request, without an intervening STOP
request for this data set, the system returns message
ATB60035I to indicate that the request was
successful— tracing has already begun for that LU/TP
combination.

In the message text:

mm/dd/yyyy hh:mm:ss.nnnnnn
The month, date, year, hour, minute, second,
and microsecond at which APPC/MVS
processed the START request for the API
trace. The time is local time.

lu_name
The name of the logical unit (LU) associated
with a currently active trace.

tp_name
The name of the transaction program (TP)
associated with a currently active trace.

sym_dest_name
The symbolic destination name associated with
a currently active trace. If the ATBTRACE
START request specified a value for the
SYMDEST keyword, that value is displayed for
sym_dest_name, and the LU and TP values
represented by sym_dest_name also appear
for lu_name and tp_name, respectively. If the
START request did not specify the SYMDEST
keyword and value (that is, the LU and TP
keywords and values were specified), “N/A”
appears to indicate that sym_dest_name does
not apply.

10-10 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

System Action: The system continues processing.

Application Programmer Response: None.

Detecting Module:
ATBVSTT

ATB60050I API TRACES STOPPED BY APPC/MVS
AT mm/dd/yyyy hh:mm:ss.nnnnnn
BECAUSE OF AN APPC/MVS
INTERNAL ERROR. THE DATA SET
CONTAINS TRACE DATA FOR: API
TRACE WAS STARTED AT mm/dd/yyyy
hh:mm:ss.nnnnnn FOR:

LU: lu_name
TP: tp_name
SYMDEST: {sym_dest_name|N/A}

{USERID: { userid|*} | SECNONE }

Explanation: If APPC/MVS encounters an internal
error and stops the APPC/MVS trace routine, the
system writes this message to any data set with active
application program interface (API) traces. Any API
trace entries that were collected but not written to a
data set are lost.

In each data set, this message appears at the end of
the most current trace data entries. (If the system had
to wrap the trace entries, this message might not be the
last message in the data set; a fragment of or entire
trace entries for previous trace data might follow this
message.

In each data set, the text beginning with “API TRACE
STARTED...” and the subsequent information is
repeated for each trace (that is, repeated as many times
as the system wrote message ATB60051I to the data
set for an ATBTRACE START request).

In the message text:

mm/dd/yyyy hh:mm:ss.nnnnnn
The month, date, year, hour, minute, second,
and microsecond at which APPC/MVS
processed the ATBTRACE START request for
the API trace. The time is local time.

lu_name
The name of the logical unit (LU) associated
with a currently active trace.

tp_name
The name of the transaction program (TP)
associated with a currently active trace.

sym_dest_name
The symbolic destination name associated with
a currently active trace. If the ATBTRACE
START request specified a value for the
SYMDEST keyword, that value is displayed for
sym_dest_name, and the LU and TP values
represented by sym_dest_name also appear
for lu_name and tp_name, respectively. If the

START request did not specify the SYMDEST
keyword and value (that is, the LU and TP
keywords and values were specified), “N/A”
appears to indicate that sym_dest_name does
not apply.

userid The user ID associated with a currently active
trace. If the ATBTRACE START request did not
specify a USERID keyword and value, an
asterisk (*) appears for userid; if the START
request specified the SECNONE keyword
instead of the USERID keyword and value,
SECNONE appears instead of USERID.

System Action: The system stops all active API
traces because of APPC/MVS trace routine termination,
and issues message ATB499I to the console.

Application Programmer Response: None.

Detecting Module:
ATBVSTW

ATB60051I API TRACE WAS STARTED AT
mm/dd/yyyy hh:mm:ss.nnnnnn FOR:

LU: lu_name
TP: tp_name
SYMDEST: {sym_dest_name|N/A}
USERID: {userid|*}

Explanation: For ATBTRACE START requests for a
particular data set, the system writes this message to
the data set for each unique combination of LU, TP, and
USERID keyword values. (If you specify the SYMDEST
keyword instead of LU and TP, the system resolves the
SYMDEST keyword value to actual LU and TP values
before determining whether the START request
specifies a unique LU/TP/USERID combination.)

If you issue a START request that is identical to a
previous START request, without an intervening STOP
request for this data set, the system returns message
ATB60035I to indicate that the request was
successful— tracing has already begun for that
LU/TP/USERID combination.

In the message text:

mm/dd/yyyy hh:mm:ss.nnnnnn
The month, date, year, hour, minute, second,
and microsecond at which APPC/MVS
processed the START request for the API
trace. The time is local time.

lu_name
The name of the logical unit (LU) associated
with a currently active trace.

tp_name
The name of the transaction program (TP)
associated with a currently active trace.

Chapter 10. API Trace Facility Messages 10-11

sym_dest_name
The symbolic destination name associated with
a currently active trace. If the ATBTRACE
START request specified a value for the
SYMDEST keyword, that value is displayed for
sym_dest_name, and the LU and TP values
represented by sym_dest_name also appear
for lu_name and tp_name, respectively. If the
START request did not specify the SYMDEST
keyword and value (that is, the LU and TP
keywords and values were specified), “N/A”
appears to indicate that sym_dest_name does
not apply.

userid The user ID associated with a currently active
trace. If the ATBTRACE START request did not
specify a USERID keyword and value, an
asterisk (*) appears for userid.

System Action: The system continues processing.

Application Programmer Response: None.

Detecting Module:
ATBVSTT

ATB60052I ATBTRACE STOP REQUEST ISSUED
BY user AT mm/dd/yyyy
hh:mm:ss.nnnnnn. THE DATA SET
CONTAINS TRACE DATA FOR: API
TRACE WAS STARTED AT mm/dd/yyyy
hh:mm:ss.nnnnnn FOR:

LU: lu_name
TP: tp_name
SYMDEST: {sym_dest_name|N/A}

{USERID: { userid|*} | SECNONE }

Explanation: For an ATBTRACE STOP request, the
system writes this message to the data set specified on
the STOP request. This message appears at the end of
the most current application program interface (API)
trace data entries. (If the system had to wrap the trace
entries, this message might not be the last message in
the data set; a fragment of or entire trace entries for
previous trace data might follow this message.

The text beginning with “API TRACE STARTED...” and
the subsequent information is repeated for each trace
(that is, repeated as many times as the system wrote
message ATB60051I to the data set for an ATBTRACE
START request).

In the message text:

user The user ID of the issuer of the ATBTRACE
STOP request for this data set.

mm/dd/yyyy hh:mm:ss.nnnnnn
The month, date, year, hour, minute, second,
and microsecond at which APPC/MVS
processed the ATBTRACE START request for
the API trace. The time is local time.

lu_name
The name of the logical unit (LU) associated
with a currently active trace.

tp_name
The name of the transaction program (TP)
associated with a currently active trace.

sym_dest_name
The symbolic destination name associated with
a currently active trace. If the ATBTRACE
START request specified a value for the
SYMDEST keyword, that value is displayed for
sym_dest_name, and the LU and TP values
represented by sym_dest_name also appear
for lu_name and tp_name, respectively. If the
START request did not specify the SYMDEST
keyword and value (that is, the LU and TP
keywords and values were specified), “N/A”
appears to indicate that sym_dest_name does
not apply.

userid The user ID associated with a currently active
trace. If the ATBTRACE START request did not
specify a USERID keyword and value, an
asterisk (*) appears for userid; if the START
request specified the SECNONE keyword
instead of the USERID keyword and value,
SECNONE appears instead of USERID.

System Action: The system stops all active API
traces associated with this data set.

Application Programmer Response: None.

Detecting Module:
ATBVSTW

ATB60054I API TRACE WAS SUSPENDED AT
mm/dd/yyyy hh:mm:ss.nnnnnn, number
ENTRIES WERE LOST

Explanation: When the system becomes overloaded
with entries for a particular application program interface
(API) trace, it suspends the trace until it can write the
entries it has already collected to the data set. The
system issues this message only if trace entries were
lost while the trace was suspended.

The system might suspend an API trace because
conversation activity for the TPs being traced is very
high, because the data set block size is not optimal for
the volume of entries, or because of environmental
constraints. For example, if conversation activity is high
and many trace entries are generated, but I/O to the
data set has stopped because another system issued a
RESERVE for the volume on which that data set
resides, the system might temporarily suspend the
trace. Similarly, system tuning problems might also
cause the system to suspend tracing activity.

In the message text:

10-12 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

mm/dd/yyyy hh:mm:ss.nnnnnn
Is the month, date, year, hour, minute, second,
and microsecond at which APPC/MVS
suspended the API traces. The time is local
time.

number The number of trace entries that were lost. The
maximum value for this number is
2147483648; once the system reaches the
maximum value, it resets the counter to zero
and continues to count lost entries.

System Action: When it issues this message, the
system has been able to resume the trace already. It
continues collecting and writing current trace data to the
data set.

Application Programmer Response: If you determine
that you have lost important trace entries, you can stop
the trace and restart it after making some adjustments
to avoid losing entries. For example, you might issue an
ATBTRACE LIST request and examine the resulting
information, only to find you are tracing more
conversations than you need. In that case, you might
reduce tracing activity by specifying a different value for
the USERID keyword on the START request.

Alternatively, you could allocate another data set without
specifying the block size, and issue a START request
with the name of that data set. Then the system will
select a block size that is optimal for the tracing activity.

Detecting Module:
ATBVSTW

ATB60055I ENTRY TO THE service_name SERVICE:

TIMESTAMP: mm/dd/yyyy hh:mm:ss.nnnnnn
ASID: asid
TCB ADDR: tcb_address
JOB NAME: jobname
LU: lu_name
TP: tp_name
USERID: userid
CONVID: conversation_id
PARAMETERS: list_of_parameters

Explanation: In a conversation being traced, a
transaction program (TP) issued a call to an APPC/MVS
or CPI-C service identified by service_name. (Refer to
Table 6-2 on page 6-6 for list of supported services.)
This message contains the following details about the
call on entry to that service:

service_name
The call name of the APPC/MVS callable
service or CPI-C verb that was issued.

mm/dd/yyyy hh:mm:ss.nnnnnn
Is the month, date, year, hour, minute, second,
and microsecond at which APPC/MVS received
the service call. The time is local time.

asid The address space identifier (ASID) associated
with the TP that issued the call.

tcb_address
The address of the task that called the service.
This value is zero if a service request block
(SRB) routine called the service.

jobname
The job name associated with the TP that
issued the call.

lu_name
The name of the logical unit (LU) associated
with the currently active trace.

tp_name
The name of the TP associated with the
currently active trace.

userid The user ID associated with the address space
where the TP is running.

conversation_id
The hexadecimal value that the system uses to
identify a particular conversation. If zero
appears in this field, either service call does
not contain a parameter for the conversation
ID, or the caller specified zero as the
conversation ID.

list_of_parameters
The supplied parameters that were specified
on the service call. Refer to individual service
descriptions in the appropriate APPC/MVS or
CPI-C reference book for descriptions of the
parameters for which the caller must supply a
value on the service call.

System Action: The system continues processing.

Application Programmer Response: None.

Detecting Module:
ATBVSTW

ATB60056I THE service_name SERVICE
COMPLETED.

TIMESTAMP: mm/dd/yyyy hh:mm:ss.nnnnnn
ASID: asid
TCB ADDR: tcb_address
JOB NAME: jobname
LU: lu_name
TP: tp_name
USERID: userid
CONVID: conversation_id
PARAMETERS: list_of_parameters
[ERROR_INFO:

MESSAGE_TEXT_LENGTH: msg_text_length
MESSAGE_TEXT: msg_text
[ERROR_LOG_PRODUCT_SET_ID_LENGTH:
id_length
ERROR_LOG_PRODUCT_SET_ID:

Chapter 10. API Trace Facility Messages 10-13

product_id
ERROR_LOG_INFORMATION_LENGTH:
info_length
ERROR_LOG_INFORMATION:
log_info]]

Explanation: In a conversation being traced, a
transaction program (TP) issued a call to an APPC/MVS
or CPI-C service identified by service_name. (Refer to
Table 6-2 on page 6-6 for list of supported services.)
This message contains the following details about the
call when all processing for that service has completed:

service_name
The call name of the APPC/MVS callable
service or CPI-C verb that was issued.

mm/dd/yyyy hh:mm:ss.nnnnnn
Is the month, date, year, hour, minute, second,
and microsecond at which APPC/MVS
completed the service call. The time is local
time.

asid The address space identifier (ASID) associated
with the TP that issued the call.

tcb_address
The address of the task that called the service.
This value is zero if a service request block
(SRB) routine called the service.

jobname
The job name associated with the TP that
issued the call.

lu_name
The name of the logical unit (LU) associated
with the currently active trace.

tp_name
The name of the TP associated with the
currently active trace.

userid The user ID associated with the address space
where the TP is running.

conversation_id
The hexadecimal value that the system uses to
identify a particular conversation. If zero
appears in this field, either service call does
not contain a parameter for the conversation
ID, or the caller specified zero as the
conversation ID.

list_of_parameters
The parameters for which the system returns
specific values after processing the service
call. If an error is encountered for the service
call, the only parameters included in the list are
the return code and reason code, if a reason
code applies. Refer to individual service
descriptions in the appropriate APPC/MVS or
CPI-C reference book for descriptions of the
parameters for which the system returns
specific values.

msg_text_length
The total number of characters that appear in
msg_text.

msg_text
A message that describes an error on the call
to the service identified by service_name. The
data returned for this parameter will appear as
a message in the format ATB8xxxxI. See
“Error_Extract (ATB8) Messages” on
page 11-24 for explanations of messages
returned by APPC/MVS.

id_length
The length of the value product_id.

v If no product set ID information is available
from the partner system, APPC/MVS sets
the value on this parameter to zero.

v If product set ID information is available from
the partner system, APPC/MVS sets the
value on this parameter to a number from 1
through 256.

If more than 256 bytes of product set ID
information is available, APPC/MVS returns
only the first 256 bytes of that information.

product_id
The identifier of the partner system that
supplies the error log information. If the product
set ID is more than 256 bytes long, APPC/MVS
returns only the first 256 bytes of the product
set ID.

For information about the format of a product
set ID, see the descriptions of the Product Set
ID (X'10') and the Product Identifier (X'11') MS
Common Subvectors in SNA Formats

info_length
The length of the log information received from
a partner TP or system. If no error log
information is available from the partner TP or
system, APPC/MVS sets the value on this
parameter to zero.

log_info
A message that describes an error found by a
partner system or TP. If APPC/MVS is the
partner system that supplies this error log
information, the data returned for this
parameter will appear as a message in the
format ASB7xxxxI or ATB7xxxxI. See
“Error_Extract Error Log Information (ASB,
ATB7) Messages” on page 11-4 for
explanations of messages returned by
APPC/MVS.

System Action: The system continues processing.

Application Programmer Response: None.

Detecting Module:
ATBVSTW

10-14 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

ATB60057I SYNCHRONOUS RETURN FROM THE
service_name SERVICE.

TIMESTAMP: mm/dd/yyyy hh:mm:ss.nnnnnn
ASID: asid
TCB ADDR: tcb_address
JOB NAME: jobname
LU: lu_name
TP: tp_name
USERID: userid
CONVID: conversation_id

Explanation: In a conversation being traced, a
transaction program (TP) issued a call to an APPC/MVS
service identified by service_name, specifying a
Notify_type of Notify_ECB. (Refer to Table 6-2 on
page 6-6 for list of supported services.) In this case, the
system returns control to the TP before processing the
call. This message indicates that the system has
accepted the call for asynchronous processing, and
includes the following details about the call on initial
return from the system:

service_name
The call name of the APPC/MVS callable
service or CPI-C verb that was issued.

mm/dd/yyyy hh:mm:ss.nnnnnn
Is the month, date, year, hour, minute, second,
and microsecond at which APPC/MVS first
returns control to the program that issued the
service call. The time is local time.

asid The address space identifier (ASID) associated
with the TP that issued the call.

tcb_address
This value is zero.

jobname
The job name associated with the TP that
issued the call.

lu_name
The name of the logical unit (LU) associated
with the currently active trace.

tp_name
The name of the TP associated with the
currently active trace.

userid The user ID associated with the address space
where the TP is running.

conversation_id
The hexadecimal value that the system uses to
identify a particular conversation. If zero
appears in this field, either service call does
not contain a parameter for the conversation
ID, or the caller specified zero as the
conversation ID.

System Action: The system continues processing.
When the system finishes processing the call, it writes
message ATB60056I to the data set.

Application Programmer Response: None.

Detecting Module:
ATBVSTW

ATB60058I ATBTRACE STOP WAS SUCCESSFUL,
BUT number ENTRIES WERE LOST AT
mm/dd/yyyy hh:mm:ss.nnnnnn BECAUSE
OF BUFFER SHORTAGE

Explanation: The system successfully processed an
ATBTRACE STOP request; however, the system was
unable to write all trace entries to the data set because
of a buffer shortage.

In the message text:

number The number of trace entries that were lost. The
maximum value for this number is 2147483648
entries.

mm/dd/yyyy hh:mm:ss.nnnnnn
Is the month, date, year, hour, minute, second,
and microsecond at which APPC/MVS lost the
API trace data entries. The time is local time.

System Action: The system stops collecting any
further trace data for the data set specified on the
ATBTRACE request.

Application Programmer Response: None.

Detecting Module:
ATBVSTW

ATB60061I AN FMH-5 WAS SENT TO PARTNER LU
partner_lu.

TIMESTAMP: mm/dd/yyyy hh:mm:ss.nnnnnn
ASID: asid
TCB ADDR: tcb_address
JOB NAME: jobname
LU: lu_name
TP: tp_name
USERID: userid
CONVID: conversation_id
FMH-5: fmh-5

Explanation: For a conversation being traced,
APPC/MVS sent an FMH-5 to the partner LU.

In the message text:

partner_lu
The 17-character name of the partner LU to
which the FMH-5 was sent.

mm/dd/yyyy hh:mm:ss.nnnnnn
Is the month, date, year, hour, minute, second,
and microsecond at which APPC/MVS sent the
FMH-5. The time is local time.

Chapter 10. API Trace Facility Messages 10-15

asid The address space identifier (ASID) of the
APPC address space.

tcb_address
The address of the task that sent the FMH-5.

jobname
The job name associated with the task that
sent the FMH-5.

lu_name
The name of the logical unit (LU) associated
with the currently active trace.

tp_name
The name of the TP associated with the
currently active trace.

userid The user ID associated with the address space
where the TP is running.

conversation_id
The hexadecimal value that the system uses to
identify a particular conversation.

fmh-5 256 bytes of hexadecimal FMH-5 data. Refer
to SNA Formats for more information on
FMH-5 format and contents.

System Action: The system continues processing.

Application Programmer Response: None.

Detecting Module:
ATBVSTW

ATB60062I AN FMH-5 WAS RECEIVED ON LOCAL
LU local_lu FROM PARTNER LU
partner_lu.

TIMESTAMP: mm/dd/yyyy hh:mm:ss.nnnnnn
ASID: asid
TCB ADDR: tcb_address
JOB NAME: jobname
LU: lu_name
TP: tp_name
USERID: userid
CONVID: conversation_id
FMH-5: fmh-5

Explanation: For a conversation being traced,
APPC/MVS received an FMH-5 from the partner LU.

In the message text:

partner_lu
The 17-character name of the partner LU that
sent the FMH-5.

mm/dd/yyyy hh:mm:ss.nnnnnn
Is the month, date, year, hour, minute, second,
and microsecond at which APPC/MVS received
the FMH-5. The time is local time.

asid The address space identifier (ASID) of the
APPC address space.

tcb_address
The address of the task that received the
FMH-5.

jobname
The job name associated with the task that
received the FMH-5.

lu_name
The name of the logical unit (LU) associated
with the currently active trace.

tp_name
The name of the TP associated with the
currently active trace.

userid Userid associated with the APPC/MVS address
space.

conversation_id
This value is zero.

fmh-5 256 bytes of hexadecimal FMH-5 data. Refer
to SNA Formats for more information on
FMH-5 format and contents.

System Action: The system continues processing.

Application Programmer Response: None.

Detecting Module:
ATBVSTW

ATB60063I AN FMH-7 WAS SENT TO PARTNER LU
partner_lu.

TIMESTAMP: mm/dd/yyyy hh:mm:ss.nnnnnn
ASID: asid
TCB ADDR: tcb_address
JOB NAME: jobname
LU: lu_name
TP: tp_name
USERID: userid
CONVID: conversation_id
FMH-7: fmh-7
ERROR_INFO:

MESSAGE_TEXT_LENGTH: msg_text_length
MESSAGE_TEXT: msg_text

Explanation: For a conversation being traced,
APPC/MVS sent an FMH-7 to the partner LU.

In the message text:

partner_lu
The 17-character name of the partner LU to
which the FMH-7 was sent.

mm/dd/yyyy hh:mm:ss.nnnnnn
Is the month, date, year, hour, minute, second,
and microsecond at which APPC/MVS sent the
FMH-7. The time is local time.

asid The address space identifier (ASID) of the
APPC address space.

10-16 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

tcb_address
The address of the task that sent the FMH-7.

jobname
The job name associated with the task that
sent the FMH-7.

lu_name
The name of the logical unit (LU) associated
with the currently active trace.

tp_name
The name of the TP associated with the
currently active trace.

userid Userid associated with the APPC/MVS address
space.

conversation_id
This value is zero.

fmh-7 The 7-character FMH-7 data, which includes
the sense code back to VTAM. Refer to SNA
Formats for more information on FMH-7 format
and contents.

msg_text_length
The total number of characters that appear in
msg_text.

msg_text
The explanation of an error that occurred
during the processing of the service call, in the
form of an ATB7xxxxI message. For detailed
information about ATB messages, refer to
“Chapter 6. Diagnosing Problems with
APPC/MVS TPs” on page 6-1.

System Action: The system continues processing.

Application Programmer Response: None.

Detecting Module:
ATBVSTW

Chapter 10. API Trace Facility Messages 10-17

10-18 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Chapter 11. Error_Extract Reason Codes and Messages

This chapter complements the Error_Extract information presented in “Chapter 6.
Diagnosing Problems with APPC/MVS TPs” on page 6-1. It contains:

v A table that matches Error_Extract reason codes with Error_Extract error
messages

v Explanations of Error_Extract error log information (ASB, ATB7) messages

v Explanations of Error_Extract (ATB8) messages.

Summary of Error_Extract Reason Codes
When the Error_Extract service finds an error in a call to a conversation service, it
returns a reason code on the Service_reason_code parameter and an error
message on the Message_text parameter.

Use the following table to find the reason codes that are associated with each
message. Then see “Error_Extract (ATB8) Messages” on page 11-24 for the
explanation of the message. Design your application to handle the error situation
indicated in the message explanation.

There are no reason codes associated with the log data messages that
Error_Extract returns.

Reason Code (decimal) Associated Message Identifier

3 ATB80003I

4 ATB80004I

5 ATB80005I

6 ATB80006I

8 ATB80008I

9 ATB80009I

10 ATB80010I

11 ATB80011I

12 ATB80016I

13 ATB80016I

14 ATB80014I

15 ATB80011I

16 ATB80016I

17 ATB80016I

18 ATB80016I

19 ATB80016I

20 ATB80020I

21 ATB80016I

22 ATB80016I

23 ATB80023I

24 ATB80016I

25 ATB80025I

© Copyright IBM Corp. 1991, 2001 11-1

Reason Code (decimal) Associated Message Identifier

26 ATB80026I

27 ATB80014I

28 ATB80016I

29 ATB80016I

30 ATB80023I

31 ATB80023I

33 ATB80033I

34 ATB80034I

35 ATB80016I

36 ATB80036I

37 ATB80037I

38 ATB80038I

39 ATB80039I

40 ATB80040I

41 ATB80041I

42 ATB80042I

43 ATB80043I

44 ATB80044I

45 ATB80045I

46 ATB80046I

47 ATB80047I

48 ATB80048I

49 ATB80049I

50 ATB80050I

51 ATB80051I

52 ATB80052I

53 ATB80053I

54 ATB80054I

55 ATB80055I

56 ATB80055I

58 ATB80058I

59 ATB80059I

60 ATB80060I

61 ATB80061I

62 ATB80062I

63 ATB80063I

64 ATB80064I

65 ATB80065I

66 ATB80066I

67 ATB80067I

68 ATB80068I

11-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Reason Code (decimal) Associated Message Identifier

69 ATB80069I

70 ATB80070I

71 ATB80071I

72 ATB80016I

73 ATB80073I

74 ATB80074I

75 ATB80075I

76 ATB80076I

77 ATB80077I

78 ATB80078I

79 ATB80079I

82 ATB80082I

83 ATB80083I

84 ATB80084I

85 ATB80085I

86 ATB80086I

87 ATB80087I

88 ATB80088I

89 ATB80089I

90 ATB80090I

91 ATB80091I

92 ATB80092I

93 ATB80093I

94 ATB80094I

95 ATB80095I

96 ATB80096I

97 ATB80097I

98 ATB80098I

99 ATB80099I

100 ATB80100I

101 ATB80101I

102 ATB80102I

103 ATB80103I

104 ATB80104I

105 ATB80105I

106 ATB80106I

107 ATB80107I

108 ATB80108I

109 ATB80109I

110 ATB80110I

111 ATB80111I

Chapter 11. Error_Extract Reason Codes and Messages 11-3

Reason Code (decimal) Associated Message Identifier

112 ATB80112I

114 ATB80114I

115 ATB80115I

116 ATB80116I

117 ATB80117I

118 ATB80016I

119 ATB80119I

121 ATB80121I

122 ATB80122I

123 ATB80123I

124 ATB80124I

125 ATB80125I

126 ATB80126I

127 ATB80127I

127 ATB80127I

128 ATB80128I

129 ATB80129I

130 ATB80130I

131 ATB80131I

133 ATB80133I

134 ATB80134I

135 ATB80135I

136 ATB80136I

138 ATB80138I

139 ATB80139I

140 ATB80140I

141 ATB80141I

142 ATB80142I

Error_Extract Error Log Information (ASB, ATB7) Messages
The Error_Extract service can return one of the messages described in this section
when a partner system or TP finds an error in the most recently completed call to
another APPC TP conversation service or CPI Communications (CPI-C) call. These
messages appear on the Error_log_information parameter on return from
Error_Extract.

Error_Extract also returns error messages when APPC/MVS finds an error in a call
to an APPC conversation service. For descriptions of those messages, see
“Error_Extract (ATB8) Messages” on page 11-24.

11-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

ASB70000I Abend occurred in APPC/MVS
transaction scheduler while processing
inbound allocate request.

Explanation: A TP called the Allocate service to
allocate a conversation with a program on MVS. An
abend occurred in the APPC/MVS transaction scheduler
when it tried to schedule the request.

Source: APPC/MVS

Detecting Module:
ASBSCPR, ASBSCSS

System Action: The system ends the conversation.
The system rejects the request with a sense code of
tp_not_available_no_retry (X'084C0000'). The system
writes a logrec data set record that describes the error.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Check the logrec
data set record for the abend that occurred in
APPC/MVS transaction scheduler. See the response for
the abend in z/OS MVS System Codes.

ASB70001I APPC/MVS transaction scheduler
cannot obtain storage for its internal
data area.

Explanation: The APPC/MVS transaction scheduler
could not obtain enough storage to process a request to
schedule an inbound TP.

Source: APPC/MVS

Detecting Module:
ASBSCPR

System Action: The APPC/MVS scheduler ends the
conversation. The system rejects the request with a
sense code of tp_not_available_no_retry (X'084C0000').
The system writes a logrec data set record that
describes the error.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the IBM
Support Center. Provide the logrec data set error
record.

ASB70002I APPC/MVS cannot schedule inbound
TP. Scheduler class class_name is not
active.

Explanation: The APPC/MVS transaction scheduler
could not schedule an inbound TP using the specified
scheduler class. The scheduler class is not active.

In the message text:

class_name The name of the scheduler class
specified in the TP profile for the
inbound TP.

Source: APPC/MVS

Detecting Module:
ASBSCPR

System Action: The system ends the conversation.
The system rejects the request with a sense code of
tp_not_available_no_retry (X'084C0000').

Application Programmer Response: If the TP is
using a scheduler class that is specified in an
associated TP profile, validate that the specified class is
correct. If it is correct, or if the TP is using a default
scheduler class, contact the system programmer.

Operator Response: At the request of the system
programmer, enter a SET ASCH command to activate
an updated ASCHPMxx parmlib member.

Security Administrator Response: At the request of
the application programmer, ensure that a CLASSADD
statement in an ASCHPMxx parmlib member defines
the scheduler class. See the ASCHPMxx parmlib
member description in z/OS MVS Initialization and
Tuning Reference for the syntax of the CLASSADD
statement. Ask the operator to enter a SET ASCH
command to activate the scheduler class.

ASB70003I Scheduler class class_name is not
defined to the APPC/MVS transaction
scheduler.

Explanation: The APPC/MVS transaction scheduler
could not schedule an inbound TP using the scheduler
class specified in the associated TP profile. The
scheduler class is not defined in an ASCHPMxx parmlib
member.

In the message text:

class_name The name of the scheduler class
specified in the TP profile for the
inbound TP.

Source: APPC/MVS

Detecting Module:
ASBSCPR

System Action: The system ends the conversation.
The system rejects the request to schedule the TP with
a sense code of tp_not_available_no_retry
(X'084C0000').

Application Programmer Response: Verify that the
scheduler class specified on the CLASS statement in
the associated TP profile is correct. If it is correct,
contact the system programmer.

Security Administrator Response: Enter a

Chapter 11. Error_Extract Reason Codes and Messages 11-5

CLASSADD statement in an ASCHPMxx parmlib
member to define the scheduler class. See the
ASCHPMxx parmlib member description in z/OS MVS
Initialization and Tuning Reference for the syntax of the
CLASSADD statement.

ASB70004I APPC/MVS transaction scheduler is
terminating.

Explanation: The APPC/MVS transaction scheduler
could not schedule a TP. The scheduler is terminating.

Source: APPC/MVS

Detecting Module:
ASBSCPR

System Action: The system ends the conversation.
The system rejects the request to schedule the TP with
a sense code tp_not_available_no_retry (X'084C0000').

Application Programmer Response: Contact the
operator.

Operator Response: Wait for the ASCH address
space to end, as indicated by message ASB053I. Then,
if you wish to restart the ASCH address space, enter a
START ASCH command.

ASB70005I APPC/MVS transaction scheduler
cannot schedule an inbound TP.
Internal error code: error_code

Explanation: The APPC/MVS transaction scheduler
could not schedule an inbound allocate request. An
internal error occurred in the transaction scheduler.

In the message text:

error_code An internal error code (decimal) that is
useful to the IBM Support Center
when diagnosing the error.

Source: APPC/MVS

Detecting Module:
ASBSCPR, ASBSCIS, ASBSCT2

System Action: The system ends the conversation.
The system rejects the request with a sense code of
tp_not_available_no_retry (X'084C0000').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the IBM
Support Center. Provide the error code identified in the
message text.

ASB70006I APPC/MVS transaction scheduler class
not specified in TP Profile, and no
default class name is defined.

Explanation: The APPC/MVS transaction scheduler
could not schedule an inbound TP. The associated TP
profile did not specify a scheduler class, and no default
scheduler class was defined on the OPTIONS
statement in the ASCHPMxx parmlib member. Therefore
the scheduler could not determine the class in which to
schedule the TP.

Source: APPC/MVS

Detecting Module:
ASBSCPR

System Action: The system ends the conversation.
The system rejects the request with a sense code of
tp_not_available_no_retry (X'084C0000').

Application Programmer Response: Contact the
system programmer.

Operator Response: At the request of the system
programmer, enter a SET ASCH=xx command to
activate the updated ASCHPMxx parmlib member.

Security Administrator Response: Do one of the
following:

v Enter a TPMODIFY command to add the name of a
scheduler class to the CLASS statement in the TP
profile

v Enter the OPTIONS DEFAULT(class_name)
statement in an ASCHPMxx parmlib member, where
class_name is the the name of the default scheduler
class. Ask the operator to enter a SET ASCH=xx
command to activate the updated ASCHPMxx parmlib
member.

ASB70007I APPC/MVS transaction scheduler
cannot schedule inbound allocate
request. Error codes from IXCMSGI
macro: Return code return_code,
reason code reason_code.

Explanation: A TP called the Allocate service to
allocate a conversation with a program on MVS. The
APPC/MVS transaction scheduler could not schedule
the request. The system could not execute the
IXCMSGI macro, which allows a cross-system coupling
facility (XCF) member to receive a message from
another member in its XCF group.

In the message text:

return_code The return code from the IXCMSGI
macro (in hexadecimal).

reason_code The reason code from the IXCMSGI
macro (in hexadecimal).

Source: APPC/MVS

11-6 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Detecting Module:
ASBSCPR

System Action: APPC/MVS ends the conversation.
The system rejects the request with a sense code of
TP_not_available_no_retry (X'084C0000') to the TP that
called the Allocate service.

Application Programmer Response: Contact the
system programmer. Provide the return and reason
codes from the IXCMSGI macro.

Security Administrator Response: See the
description of the IXCMSGI macro in z/OS MVS
Programming: Sysplex Services Reference for the
actions associated with the return and reason codes
from IXCMSGI. If the problem persists after you take
the specified actions, contact the IBM Support Center.

ASB70008I APPC/MVS transaction scheduler
cannot schedule inbound allocate
request. An internal error occurred.

Explanation: A TP called the Allocate service to
allocate a conversation with a program on MVS. The
APPC/MVS transaction scheduler could not schedule
the request because an internal error occurred.

Source: APPC/MVS

Detecting Module:
ASBSCPR

System Action: APPC/MVS ends the conversation.
The system rejects the request with a sense code of
TP_not_available_no_retry (X'084C0000').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the IBM
support center.

ASB70009I APPC/MVS transaction scheduler
cannot schedule inbound allocate
request. Scheduler class class_name
was deleted.

Explanation: A TP called the Allocate service to
allocate a conversation with a program on MVS. The
APPC/MVS transaction scheduler could not schedule
the program. The CLASS statement in the TP profile
specified a scheduler class that was deleted before the
TP received control. The scheduler cannot schedule the
TP until the scheduler class is activated.

In the message text:

class_name The name of the scheduler class
specified in the TP profile for the
inbound TP.

Source: APPC/MVS

Detecting Module:
ASBSCAD

System Action: APPC/MVS ends the conversation.
The system rejects the request with a sense code of
TP_not_available_no_retry (X'084C0000').

Application Programmer Response: Validate that the
CLASS statement in the TP profile is correct. If it is
correct, contact the operator to determine why the
scheduler class was deleted. If it is not correct, enter a
valid scheduler class name on the CLASS statement in
the TP profile.

Operator Response: Enter a DISPLAY ASCH
command to confirm that the scheduler class was
deleted. If the scheduler was incorrectly deleted, ask the
system programmer to enter a CLASSADD statement in
the ASCHPMxx parmlib member to add the class. Then
enter a SET ASCH command to activate the class.

Security Administrator Response: If requested by
the operator, enter a CLASSADD statement in the
ASCHPMxx parmlib member to add the class that was
originally deleted.

ASB70010I APPC/MVS transaction scheduler could
not associate a TP with an initiator.

Explanation: The APPC/MVS transaction scheduler
could not schedule an inbound TP using the specified
scheduler class. The scheduler could not associate the
TP with an initiator.

Source: APPC/MVS

Detecting Module:
ASBSCIS

System Action: The system ends the conversation.
The system rejects the request with a sense code of
TP_not_available_no_retry (X'084C0000').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the IBM
Support Center.

ASB70011I ASCH initiator could not create
security environment for TP.

Explanation: The APPC/MVS transaction scheduler
could not create an execution environment for a TP. If
the TP is a multi-trans TP, the TP profile might contain a
generic user ID (specified on the GENERIC_ID
statement) that is not valid.

Source: APPC/MVS

Detecting Module:
ASBSCIS

Chapter 11. Error_Extract Reason Codes and Messages 11-7

System Action: The system ends the conversation.
The system rejects the request with a sense code of
TP_not_available_no_retry (X'084C0000'). The system
might write a logrec data set record that describes the
error. The system also might request an SVC dump.

Security Administrator Response: Check the logrec
data set to see if the system wrote an error record. If
not, contact the support center for the security product
that is installed on your system. Provide the SVC dump
(if one is available).

ASB70012I An internal failure occurred in the
APPC/MVS transaction scheduler.
Detection code is: error_data

Explanation: An internal failure occurred in
APPC/MVS transaction scheduler (ASCH) processing.

In the message text:

error_data An internal code (in hexadecimal),
which is useful to the IBM Support
Center when diagnosing the error.

Source: APPC/MVS

Detecting Module:
ASBSCIS

System Action: The system ends the conversation.
The system rejects the request with a sense code of
TP_not_available_no_retry (X'084C0000').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the IBM
Support Center. Provide the error code specified in the
message text.

ASB70013I ASCH initiator was unable to determine
the SYSOUT and accounting
information for the TP.

Explanation: The APPC/MVS transaction scheduler
could not obtain SYSOUT and accounting information
for a user. The WORK ATTRIBUTES segment of the
user’s security profile does not contain the SYSOUT
and accounting information required to schedule the TP.

Source: APPC/MVS

Detecting Module:
ASBSCIS

System Action: The system ends the conversation.
The system rejects the request with a sense code of
TP_not_available_no_retry (X'084C0000').

Application Programmer Response: Contact the
system administrator.

System Administrator Response: At the request of

the application programmer, specify valid SYSOUT and
accounting information in the WORK ATTRIBUTES
segment of the user’s security profile. If the problem
persists, contact the system programmer.

Security Administrator Response: At the request of
the system administrator, contact the IBM Support
Center.

ASB70014I ASCH initiator could not schedule a
TP. TP account number rejected by
IEFUAV installation exit.

Explanation: The APPC/MVS transaction scheduler
(ASCH) initiator tried to create an execution
environment for a TP. The initiator could not create the
environment. The IEFUAV installation exit rejected the
account number specified on the JCL JOB statement in
one of the following:
v The associated TP profile
v The user’s security profile.

Source: APPC/MVS

Detecting Module:
ASBSCIS

System Action: The system ends the conversation.
The system rejects the request to schedule the TP with
a sense code of TP_not_available_no_retry
(X'084C0000').

Application Programmer Response: Validate that the
account number in the TP profile is correct. If it is
correct, contact the system programmer.

Security Administrator Response: At the request of
the application programmer, see z/OS MVS Installation
Exits for a description of installation specifications for
the IEFUAV exit. Ensure that the IEFUAV exit is working
correctly.

ASB70015I ASCH initiator cannot schedule the
OpenEdition MVS fork TP. OpenEdition
MVS job initiation processing return
code is: error_data.

Explanation: An internal failure occurred in z/OS
UNIX System Services initiation processing for the z/OS
UNIX System Services fork TP.

error_data An internal code (in hexadecimal),
which is useful to the IBM Support
Center when diagnosing the error.

Source: APPC/MVS

Detecting Module:
ASBSCIS

System Action: The system ends the conversation.
The system rejects the request with a sense code of
TP_not_available_no_retry (XX'084C0000').

11-8 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the IBM
Support Center. Provide the error code error_data
specified in the message text.

ATB70001I TP name specified on inbound allocate
request is not valid. Length of TP
name is zero.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). The field in the FMH-5 that specifies
the TP name length contains a zero. The value in this
field must be greater than zero.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: APPC/MVS deallocates the
conversation with a sense code of TPN_not_recognized
(X'10086021').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the
support center for the system that sent the FMH-5.
Provide the sense code and the message explanation.

ATB70002I TP name specified on inbound allocate
request is not valid. Name contains all
blank characters.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). The field in the FMH-5 that specifies
the TP name contains all blank characters. The TP
name must contain at least one character that is not a
blank (if it is a SNA service TP) or no blank characters
(if it is any other type of TP).

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: APPC/MVS deallocates the
conversation with a sense code of TPN_not_recognized
(X'10086021').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the
support center for the system that sent the request.
Provide the sense code and the message explanation.

ATB70003I TP name tp_name specified on inbound
allocate request is not valid. It is the
name of a SNA service TP that
APPC/MVS does not support.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). The field in the FMH-5 that specifies
the TP name is not valid. It is the name of a SNA
service TP that APPC/MVS does not support.

In the message text:

tp_name The TP name specified in the side
information or on the TP_name
parameter on the call to Allocate.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: APPC/MVS deallocates the
conversation with a sense code of TPN_not_recognized
(X'10086021').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the
support center for the system that sent the request.
Provide the sense code and the message explanation.

ATB70005I TP name tp_name is not valid. An
inbound allocate request specified a
TP name with an incorrect character. If
the TP is a SNA service TP, the first
character is incorrect.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). The field in the FMH-5 that specifies
the TP name contains:

v One or more characters that are not from character
set 00640 or the Type A character set, or

v A SNA service TP name that is not valid (because
the first character is incorrect), or

v The customer has a client/server application in which
the server TP name contains # (X'7B') or @ (X'7C').

In the message text:

tp_name The name specified on the TP_name
parameter on the call to Allocate.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: APPC/MVS deallocates the
conversation with a sense code of TPN_not_recognized
(X'10086021').

Chapter 11. Error_Extract Reason Codes and Messages 11-9

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the
support center for the system that sent the request.
Provide the sense code and the message explanation.

ATB70006I TP name tp_name specified on the
inbound allocate request is not valid. A
request to allocate a SNA service TP
specified an incorrect TP name.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). The field in the FMH-5 that specifies
the TP name contains one or more characters (besides
the first character) that are not from the type A character
set.

In the message text:

tp_name The name specified on the TP_name
parameter on the call to Allocate.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: APPC/MVS deallocates the
conversation with a sense code of TPN_not_recognized
(X'10086021').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the
support center for the system that sent the request.
Provide the sense code and the message explanation.

ATB70007I TP name tp_name specified on the
inbound allocate request is not valid.
The system could not find the
associated TP profile.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). The field in the FMH-5 that specifies
the TP name is not valid. The system could not find the
associated TP profile for one of the following reasons:

v The profile does not exist

v TP_name is an alias that does not have an
associated TP profile

v The allocate request specified security_none, and the
profile is at a group or user level (when specifying
security_none, the TP profile must be at a system
level)

v The LU on which the request arrived has a TP level
of SYSTEM, and the profile has a level of GROUP or
USER (when the TP level is SYSTEM, only SYSTEM
TP profiles are searched)

v The LU on which the request arrived has a TP level
of GROUP, and the profile has a level of USER

(when the TP level is GROUP, only group and system
level TP profiles are searched)

In the message text:

tp_name The TP name specified in the side
information or on the TP_name
parameter on the call to Allocate.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: APPC/MVS deallocates the
conversation with a sense code of TPN_not_recognized
(X'10086021').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the
support center for the system that sent the request.
Provide the sense code and the message explanation.
Ask the support center to verify that the user’s TP
profile exists and is active, and that the TP level is
correct.

ATB70008I TP security violation. Signed-on-from
and signed-on-to lists are not
synchronized.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). A security violation occurred. The
FMH-5 contains security information that is not
synchronized with the security information for the
security product installed on MVS.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system sends an allocate request
for the sign off TP (X'06F3F0F0') to the partner LU (to
sign off the user). The system rejects the request with a
sense code of security_violation (X'080F6051').

Application Programmer Response: Try to allocate
the conversation again. If the problem persists, contact
the system programmer.

Security Administrator Response: Contact the IBM
Support Center.

ATB70009I TP security violation. Inbound request
to attach SIGNON SNA service TP
specified a security_type that was not
security_none.

Explanation: APPC/MVS received an inbound request
(FMH-5) to allocate a conversation with the SIGNON
SNA service TP. The FMH-5 specified a security type

11-10 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

value that is not valid. TPs can allocate the SIGNON TP
only with a security_type of security_none.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of security_violation (X'080F6051').

Application Programmer Response: Change the
value on the security_type parameter to 100
(security_none).

ATB70010I TP security violation. Inbound allocate
request specified a password, profile,
or both, but did not specify a user ID.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). The FMH-5 did not specify a user ID,
but did specify one or both of the following:
v A password
v A profile.

If the FMH-5 contains a password or a profile, the
request must also specify a user ID.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of security_violation (X'080F6051').

Application Programmer Response: On the call to
the Allocate service, specify a valid user ID on the
User_ID parameter.

ATB70011I TP security violation. Allocate request
specified a user ID but did not specify
a password.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). A TP security violation occurred. The
FMH-5 specified a user ID, but did not specify a
password. A password is required if a user ID is
specified, unless the request specifies a conversation
security level of ALREADYV (for already verified) or
PERSISTV (for persistent verification).

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of security_violation (X'080F6051').

Application Programmer Response: On the call to

the Allocate service, specify a valid password on the
Password parameter.

ATB70012I TP security violation. Inbound allocate
request specified persistent
verification security level, but did not
specify a user ID.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). A TP security violation occurred. The
FMH-5 did not specify a user ID. The current security
level supports persistent verification, which requires that
the FMH-5 specify a user ID.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of security_violation (X'080F6051').

Application Programmer Response: On the call to
the Allocate service, specify a valid user ID on the
User_ID parameter.

ATB70013I TP security violation. Inbound allocate
request specified ’already verified’
security level, but did not specify a
user ID.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). A TP security violation occurred. The
inbound allocate request is already verified by the
partner LU, but the FMH-5 did not specify a user ID.
Requests with a security level of “already verified” must
specify a user ID.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of security_violation (X'080F6051').

Application Programmer Response: On the call to
the Allocate service, specify a valid user ID on the
User_ID parameter.

ATB70014I TP security violation. User ID userid is
longer than the maximum number of
characters allowed on MVS.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). A TP security violation occurred. The
FMH-5 specified a user ID that is longer than the
maximum number of characters allowed on MVS (eight
characters).

In the message text:

Chapter 11. Error_Extract Reason Codes and Messages 11-11

userid The user ID specified in the FMH-5
used to pass the allocate request to
MVS.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of security_violation (X'080F6051').

Application Programmer Response: On the call to
the Allocate service, specify a valid user ID on the
User_ID parameter.

ATB70015I TP security violation. Password is
longer than the maximum number of
characters allowed on MVS.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). A TP security violation occurred. The
FMH-5 specified a password that is longer than the
maximum number of characters allowed on MVS (eight
characters).

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of security_violation (X'080F6051').

Application Programmer Response: On the call to
the Allocate service, specify a valid password on the
Password parameter.

ATB70016I TP security violation. Profile name is
longer than the maximum number of
characters allowed on MVS.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). A TP security violation occurred. The
FMH-5 specified a profile name that is longer than the
maximum number of characters allowed on MVS (eight
characters).

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of security_violation (X'080F6051').

Application Programmer Response: On the call to
the Allocate service, specify a valid profile name on the
profile parameter.

ATB70017I TP security violation. Partner LU
plu_name rejected the allocate request
because authorization checks failed.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). A TP security violation occurred. The
TP encountered one of the following security violations,
depending on the security_type value specified on the
allocate request:

v The user ID, password, or optional group profile
name is not valid

v The MVS LU does not accept security_none requests

v The user is not authorized to access the partner LU
from this local LU.

In the message text:

plu_name The name of the LU where the
allocate request arrived.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of security_violation (X'080F6051').

Application Programmer Response: If a
security_type of security_pgm was specified on the
allocate request, verify the user ID, password, and
group profile name (if any) that are specified on the
allocate request. If these values are correct, or if a
different security_type was specified on the allocate
request, ask the security administrator to help you
determine what caused the security violation.

Security Administrator Response: Depending on the
security_type value specified on the allocate request, do
one of the following:

v For a security_type of security_none, verify that the
LU accepts security_none allocate requests by
checking the security product class profiles that
control user access to the LU, or checking the
SECACPT parameter value on the VTAM APPL
definition of the LU.

v For a security_type of security_pgm or
security_same, verify that the user has authority to
access the partner LU from this local LU by checking
the security product class profiles that control user
access to and from the LU, or by checking the
SECACPT parameter value on the VTAM APPL
definition of the LU.

See z/OS MVS Planning: APPC/MVS Management for
more information about controlling access to or from
LUs.

11-12 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

ATB70018I TP security violation. Password
specified for user userid has expired.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). A TP security violation occurred. The
user does not have access to the LU specified in the
FMH-5. The specified password has expired.

In the message text:

userid The user ID specified in the FMH-5
used to pass the allocate request to
MVS. Blanks appear in this field if the
specified Security_type is
Security_none.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of security_violation (X'080F6051'). The
system sends to the partner LU an allocate request for
the expired password notification TP (X'30F0F5F2') to
tell the user that the password has expired.

Application Programmer Response: Contact the
system administrator to verify the required security
information.

System Administrator Response: See the
documentation for the security product installed on the
other system for information about how to change the
password.

Note: For information on setting up an IBM-supplied
sample program to change passwords, see z/OS
MVS Planning: APPC/MVS Management.

ATB70020I TP security violation. User userid not
authorized to access TP tp_name.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). A TP security violation occurred. The
user does not have authority to access the TP Profile
specified in the FMH-5.

In the message text:

userid The user ID specified in the FMH-5
used to pass the allocate request to
MVS. Blanks appear in this field if the
specified Security_type is
Security_none.

tp_name The TP name specified in the FMH-5
used to pass the allocate request to
MVS.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of security_violation (X'080F6051') or
TP_access_denied (X'080F0983').

Application Programmer Response: Contact the
system administrator for the partner system to verify the
required security information.

ATB70021I TP security violation. User not
authorized to test TP tp_name.

Explanation: APPC/MVS received an inbound request
(FMH-5) to allocate a conversation with a TP that is
registered for testing. APPC/MVS rejected the request
because incorrect security information was specified in
the FMH-5.

In the message text:

tp_name The TP name specified in the FMH-5
used to pass the allocate request to
MVS.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of security_violation (X'080F6051') or
TP_access_denied (X'080F0983').

Application Programmer Response: Ensure that the
security information specified on the allocate request is
correct. If the information is correct, ask the partner
system administrator to verify that the user has the
authority to test the TP.

ATB70022I TP security violation. User userid not
authorized to run TP tp_name, which is
served by an APPC/MVS server.

Explanation: APPC/MVS received an inbound request
(FMH-5) to allocate a conversation with a TP that is
served by an APPC/MVS server. A TP security violation
occurred. The user who submitted the request is not
authorized to allocate a conversation with this TP name
to an APPC/MVS server.

In the message text:

userid The user ID specified in the FMH-5
used to pass the allocate request to
MVS. Blanks appear in this field if the
specified Security_type is
Security_none.

tp_name The TP name specified in the FMH-5
used to pass the allocate request to
MVS.

Source: APPC/MVS

Chapter 11. Error_Extract Reason Codes and Messages 11-13

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of security_violation (X'080F6051') or
TP_access_denied (X'080F0983'). The system does not
queue the allocate request for a server.

Application Programmer Response: Contact the
system programmer to determine the required security
information for the TP.

Security Administrator Response: At the request of
the system programmer, update the security profile for
the APPC/MVS server to allow the user to access the
server.

Security Administrator Response: At the request of
the application programmer, see the section on installing
APPC/MVS servers in z/OS MVS Programming: Writing
Servers for APPC/MVS for information about the
security profiles that protect the server. Provide the
application programmer with the security information
and, if necessary, ask the security administrator to grant
the user access to the server.

ATB70023I APPC/MVS cannot process allocate
request. PIP data is specified but is not
supported by APPC/MVS.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). The FMH-5 specified data in the PIP
data area. APPC/MVS rejected the request because it
cannot receive PIP data.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of pip_not_allowed (X'10086031').

Application Programmer Response: When allocating
the conversation, specify a value of 0 on the
pip_data_length parameter (to indicate that there is no
PIP data to send).

ATB70024I APPC/MVS cannot process allocate
request. Value in FMH-5 command field
is not supported by APPC/MVS.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). APPC/MVS could not process a
command that it found in the FMH-5.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a

sense code of command_not_valid (X'1008600B').

Application Programmer Response: Contact the
system programmer for the partner system. Ask the
system programmer to correct the command in the
FMH-5.

ATB70025I APPC/MVS cannot schedule an
allocate request. LU LU_name, where
the request arrived, is a NOSCHED LU.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). The request arrived on an LU that is
not associated with a transaction scheduler and has no
APPC/MVS servers registered for the specified LU
name (a NOSCHED LU) and the requested TP name.

In the message text:

LU_name The name of LU on which the allocate
request arrived.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of TP_not_available_no_retry
(X'084C0000').

Application Programmer Response: If the request is
for an APPC/MVS server, then ask the operator to verify
that a server has registered with the LU name, TP
name and optionally other filters. Note that TP name is
case sensitive. Otherwise, ask the operator to verify that
the LU is active and associated with a scheduler. If not,
specify the name of another LU that is active and
associated with a scheduler.

Operator Response: At the request of the application
programmer, enter a DISPLAY APPC command to verify
that the LU is active and associated with a scheduler. If
not, ask the application programmer to select another
LU.

ATB70026I APPC/MVS cannot schedule an
allocate request. Scheduler
sched_name, associated with LU
LU_name where the request arrived, is
not active.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). APPC/MVS could not process the
request. The transaction scheduler that is associated
with the LU on which the allocate request arrived is not
active.

The following is an example of a situation that can
cause the error:

v The conversation is LU=OWN

v The LU on which the request arrived is the ASCH
base LU

11-14 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v There is no NOSCHED base LU (which means the
ASCH base LU is also the system base LU).

In the message text:

sched_name The name of the transaction scheduler
associated with the LU specified in the
message text.

LU_name The name of LU on which the allocate
request arrived.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of TP_not_available_no_retry (X'084C0000')
to the TP that called the allocate service.

Application Programmer Response: Ask the
operator to start the transaction scheduler.

Operator Response: At the request of the application
programmer, start the transaction scheduler identified in
the message text.

ATB70027I APPC/MVS cannot schedule allocate
request. LU LU_name is not in active
state.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). The status of the LU on which the
request arrived is not “active”.

In the message text:

LU_name The name of LU on which the allocate
request arrived.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of TP_not_available_no_retry
(X'084C0000').

Application Programmer Response: Verify that the
call to the Allocate service specifies a valid LU name on
the Partner_LU_name parameter. If the LU name is
correct, ask the system programmer to verify that the
LU is defined to VTAM.

Security Administrator Response: At the request of
the application programmer, see z/OS Communications
Server: SNA Network Implementation Guide for
information about how to diagnose a problem with the
VTAM definition for the LU.

ATB70028I APPC/MVS cannot process allocate
request. LU LU_name is not defined to
APPC/MVS.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). The LU that was supposed to receive
the request is either not active or it is not defined to
APPC/MVS.

In the message text:

LU_name The name of LU on which the allocate
request arrived.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of TP_not_available_no_retry
(X'084C0000').

Application Programmer Response: Verify that call
to the Allocate service specified a valid LU name on the
Local_LU_name parameter. If the LU name is correct,
ask the operator to verify that the LU is defined to
APPC/MVS. If the LU is defined, contact the system
programmer.

Operator Response: At the request of the application
programmer, enter a DISPLAY APPC command to verify
that the LU is defined to APPC/MVS. At the request of
the system programmer, enter a SET APPC command
to activate the LU. If the LU does not become active
when you enter the SET APPC command, validate that
VTAM is active.

Security Administrator Response: At the request of
the application programmer, define the LU in an
APPCPMxx parmlib member. If necessary, see the
section on controlling configuration in z/OS MVS
Planning: APPC/MVS Management for more information
about defining local LUs. Then ask the operator to enter
a SET APPC command to activate the LU in the
APPC/MVS configuration.

ATB70030I APPC/MVS cannot schedule TP
tp_name. The TP profile is not active.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). APPC/MVS cannot schedule the TP.
The TP profile is not active.

In the message text:

tp_name The TP name specified in the FMH-5
used to pass the allocate request to
MVS.

Source: APPC/MVS

Detecting Module:
ATBFMFP

Chapter 11. Error_Extract Reason Codes and Messages 11-15

System Action: The system rejects the request with a
sense code of TP_not_available_retry (X'084B6031').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: At the request of
the application programmer, set the ACTIVE parameter
in the TP profile to YES to activate the TP profile.

ATB70031I APPC/MVS cannot schedule allocate
request. TP profile for requested TP is
an alias of another TP profile, which is
an alias of a third TP profile. A TP
profile cannot be an alias of another
alias TP profile.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). APPC/MVS cannot schedule the
request. The TP profile for the requested TP is an alias
for another TP profile, which is an alias for a third TP
profile. The TP profile for the requested TP cannot be
an alias of another TP profile that is an alias of a third
TP profile.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of TP_not_available_no_retry
(X'084C0000').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Enter a TPALIAS
command to add a valid alias to the VSAM file that
contains the TP profile information. Enter a TPDELETE
command to delete the TP profile that had an incorrect
alias. See the section on using the APPC/MVS
administration utility in z/OS MVS Planning: APPC/MVS
Management for more information about adding a profile
alias to a TP profile.

ATB70032I APPC/MVS cannot schedule an
allocate request. A syntax error was
found in the TP profile.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). APPC/MVS cannot schedule the
request. APPC/MVS found the profile for the requested
TP, but the profile contained:

v A syntax error, or

v A data set name that used the &SYSUID variable
when the requested level of security was
security_none.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of TP_not_available_no_retry (X'084C0000')
to the TP that issued the allocate request.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: At the request of
the application programmer, do one of the following:

v Correct the syntax in the TP profile

v Remove the &SYSUID variable or specify a level of
security other than security_none.

See z/OS MVS Planning: APPC/MVS Management for
more information about modifying the contents of a TP
profile.

ATB70033I APPC/MVS cannot schedule an
allocate request. Scheduler
sched_name, associated with LU
LU_name where the request arrived, is
not a member of the APPC XCF group.
The scheduler can not be notified
about the inbound allocate request.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). APPC/MVS could not process the
request. The transaction scheduler that is associated
with the LU on which the allocate request arrived is not
an active member of the APPC/MVS XCF group. XCF
could not deliver the inbound allocate request message
to the transaction scheduler message user routine.

In the message text:

sched_name The name of the transaction scheduler
associated with the LU specified in the
message text.

LU_name The name of the LU on which the
allocate request arrived.

Source: APPC/MVS

Detecting Module: ATBFMFP

System Action: The system rejects the request with a
sense code of TP_not_available_no_retry (X'084C0000')
to the TP that called the allocate service.

Application Programmer Response: Ask the system
programmer to contact the support center for the
system that rejected the FMH-5 request.

Security Administrator Response: Determine the
reason why the transaction scheduler on the target
system is not an active member of the APPC XCF
Group, but is still identified to APPC/MVS as a
transaction scheduler. A transaction scheduler should
not remain identified to APPC/MVS when the

11-16 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

transaction scheduler is not an active member of the
APPC XCF group.

ATB70034I APPC/MVS cannot schedule an
allocate request. Scheduler
sched_name, associated with LU
LU_name where the request arrived,
did not specify a valid XCF message
user routine. The scheduler can not be
notified about the inbound allocate
request.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). APPC/MVS could not process the
request. The transaction scheduler that is associated
with the LU on which the allocate request arrived is not
an active member of the APPC/MVS XCF group. The
Inbound Allocate Request XCF message could not be
delivered because the transaction scheduler did not
specify an XCF message user routine on a
Join_Sysappc_Group service call or IXCJOIN macro call
when joining the APPC XCF group.

In the message text:

sched_name The name of the transaction scheduler
associated with the LU specified in the
message text.

LU_name The name of the LU on which the
allocate request arrived.

Source: APPC/MVS

Detecting Module: ATBFMFP

System Action: The system rejects the request with a
sense code of TP_not_available_no_retry (X'084C0000')
to the TP that called the allocate service.

Application Programmer Response: Ask the system
programmer to contact the support center for the
system that rejected the FMH-5 request.

Security Administrator Response: Determine the
reason why the transaction scheduler on the target
system did not provide an XCF message user routine
when joining the APPC XCF group.

ATB70034I APPC/MVS cannot schedule an
allocate request. Scheduler
sched_name, associated with LU
LU_name where the request arrived,
did not specify a valid XCF message
user routine. The scheduler can not be
notified about the inbound allocate
request.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). APPC/MVS could not process the
request. The transaction scheduler that is associated
with the LU on which the allocate request arrived could
not be notified of an Inbound Allocate Request. The
Inbound Allocate Request XCF message could not be
delivered because the transaction scheduler did not

specify an XCF message user routine on a
Join_Sysappc_Group service call or IXCJOIN macro call
when joining the APPC XCF Group.

In the message text:

sched_name The name of the transaction scheduler
associated with the LU specified in the
message text.

LU_name The name of the LU on which the
allocate request arrived.

Source: APPC/MVS

Detecting Module: ATBFMFP

System Action: The system rejects the request with a
sense code of TP_not_available_no_retry (X'084C0000')
to the TP that called the allocate service.

Application Programmer Response: Ask the system
programmer to contact the support center for the
system that rejected the FMH-5 request.

Security Administrator Response: Determine the
reason why the transaction scheduler on the target
system did not provide an XCF message user routine
when joining the APPC XCF group.

ATB70035I APPC/MVS cannot schedule an
allocate request. XCF Signalling
Services could not deliver an inbound
allocate request message to a
scheduler XCF message user routine
due to the unavailability of message
buffers.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). APPC/MVS could not process the
request. APPC/MVS was attempting to send an Inbound
Allocate Request message to a transaction scheduler,
which is a member of the APPC/MVS XCF group. The
attempt failed because XCF Signalling Services
message buffer space was not available after numerous
retry attempts. Some of the reasons message buffer
space might not be available are:

v There was suddenly a large amount of message
buffer space usage, which caused all the buffer
space to be temporarily exhausted.

v There is a lot of competition for message buffer
space. It is possible that the installation should have
allocated more message buffers for the transport
class used by the APPC XCF group. The installation
can use the message buffer limit to control how much
of the total message buffer resource can be used by
a specific transport class.

Source: APPC/MVS

Detecting Module: ATBMIMO

System Action: The system rejects the request with a
sense code of TP_not_available_no_retry (X'084C0000')
to the TP that called the allocate service.

Chapter 11. Error_Extract Reason Codes and Messages 11-17

Application Programmer Response: Ask the system
programmer to evaluate the message buffer space
usage for the transport class used by the APPC XCF
group.

Security Administrator Response: Modify the
amount of message buffer space made available for
local message traffic for the transport class used by the
APPC XCF Group on the local system. For more
information about modifying the amount of message
buffer space made available for local XCF message
traffic, see the SETXCF MODIFY command in z/OS
MVS System Commands.

ATB70036I APPC/MVS cannot schedule an
allocate request. XCF Signalling
Services could not deliver an inbound
allocate request message to a
scheduler XCF message user routine.
XCF IXCMSGO Return Code: xxxxxxxx
XCF IXCMSGO Reason Code: yyyyyyyy

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). APPC/MVS could not process the
request. APPC/MVS was attempting to send an Inbound
Allocate Request message to a transaction scheduler,
which is a member of the APPC/MVS XCF group. The
attempt failed due to a failure of the XCF Signalling
Services. The return and reason code from the XCF
Signalling Services IXCMSGO macro are supplied in the
message.

In the message text:

xxxxxxxx The return code from the XCF
Signalling Services IXCMSGO macro.

yyyyyyyy The reason code from the XCF
Signalling Services IXCMSGO macro.

Note: If the message indicates return code 8 and
reason code C for the IXCMSGO macro, ensure
that the userid being passed does not have too
large a security environment definition, because
the security information for the userid is part of
the message that APPC passes with the
IXCMSGO call.

Source: APPC/MVS

Detecting Module: ATBFMFP, ATBMIMO

System Action: The system rejects the request with a
sense code of TP_not_available_no_retry (X'084C0000')
to the TP that called the allocate service.

Application Programmer Response: Ask the system
programmer to contact the support center for the
system that rejected the FMH-5 request.

Security Administrator Response: Determine the
reason for the XCF failure. The service return and
reason codes explain the error. For the description of
the return and reason codes, see z/OS MVS
Programming: Sysplex Services Reference. Correct the

problem and have the application programmer send the
allocate request again.

ATB70040I APPC/MVS cannot schedule allocate
request. Log name for LU lu_name is
unknown.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5) for an conversation with
synchronization level of syncpt (protected conversation).
APPC/MVS cannot process the inbound allocate
request because an exchange log name transaction is
required to complete successfully between the
APPC/MVS logical unit and the partner logical unit prior
to initiating or receiving allocate requests for syncpoint
conversation by either logical unit.

An exchange log name transaction may have completed
successfully between the logical unit pairs previously,
but if all sessions between the logical units are lost,
another exchange log name request must be initiated to
confirm that the log names and syncpoint capabilities
negotiated between the logical units have not changed.

In the message text:

lu_name The name of the LU that initiated the
allocate request.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of TP_not_available_no_retry
(X'084C0000').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: The logical unit
(LU) that is initiating the Allocate Attach request
(sending the FMH-5) should ensure that a successful
exchange log name transaction completes prior to
sending of an Allocate Attach request for a SYNCPT
conversation. The sending LU should initiate an
exchange log name transaction with the APPC/MVS LU
that sent this message.

If an exchange log name transaction had already
completed between the partner LUs, the VTAM VARY
TERM command can be issued to terminate all of the
sessions between a specified pair of logical units. All
sessions, including the SNASVCMG sessions, must
terminate in order to cause the APPC/MVS LU to initiate
an exchange log name transaction with the LU that
received this message. The VARY TERM command
terminates all sessions abnormally.

Optionally the MODIFY CNOS command can be issued
to quiesce sessions between a specified pair of logical
units without abnormally terminating conversations.
Once the last session between the LU pair has been

11-18 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

deactivated, APPC/MVS will initiate an exchange log
name transaction. After the transaction completes,
Allocate Attach requests for syncpt conversations will be
accepted by the APPC/MVS LU.

For more information on the VTAM MODIFY and VARY
commands, see z/OS Communications Server: SNA
Operation.

ATB70041I APPC/MVS cannot schedule allocate
request. LU lu_name is not syncpt
capable.

Explanation: APPC/MVS received an inbound
Allocate request (FMH-5) to initiate exchange log-name
processing for support of protected conversations (that
is, conversations with a synchronization level of syncpt).
APPC/MVS cannot process the inbound Allocate
request because the local LU does not support the
receipt of Allocate requests for protected conversations.

In the message text:

lu_name The name of the LU on which the
Allocate request arrived.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of TPN_not_recognized (X'10086021').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the
support center for the system that sent the FMH-5.
Provide the sense code and the message explanation.

ATB70042I APPC/MVS cannot schedule allocate
request. LU lu_name cannot process
syncpt conversations.

Explanation: APPC/MVS received an inbound
Allocate request (FMH-5) for either:

v A protected conversation (a conversation with a
synchronization level of syncpt), or

v An inbound Allocate request for a SNA Service TP to
perform processing associated with protected
conversation support (that is, a request for an
exchange log-name transaction).

APPC/MVS cannot process the inbound Allocate
request because the LU’s resource manager exits are
not set with the system syncpoint manager (RRS) for
one of the following reasons:

v The system syncpoint manager is not active.

v An error that occurred during resource manager
restart processing has prevented the local LU from
registering as a resource manager with the system
syncpoint manager.

In the message text:

lu_name The name of the LU on which the
Allocate request arrived.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of TP_not_available_retry (X'084B6031').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the
support center for the system that sent the FMH-5.
Provide the sense code and the message explanation.

ATB70043I APPC/MVS cannot process allocate
request. Sync_level specified for a
RESYNC TP is not CONFIRM.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5) to initiate exchange log name
processing for support of syncpt (protected)
conversations. APPC/MVS cannot process the inbound
allocate request because the FMH-5 for the attach
request contains a synchronization level other than
confirm.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of Sync_Lvl_Not_Supported (X'10086041').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the
support center for the system that rejected the FMH-5
request. Provide the sense code and the message
explanation.

ATB70044I APPC/MVS cannot process allocate
request. Conversation type specified
for a RESYNC TP is not BASIC.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5) to initiate exchange log name
processing for support of syncpt (protected)
conversations. APPC/MVS cannot process the inbound
allocate request because the FMH-5 for the attach
request contains a Conversation Type other than Basic.

Chapter 11. Error_Extract Reason Codes and Messages 11-19

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of Conversation_Type_Mismatch
(X'10086034').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the
support center for the system that sent the FMH-5.
Provide the sense code and the message explanation.

ATB70050I Receive allocate request failed: Return
code: return_code

Explanation: APPC/MVS received an inbound request
(FMH-5) to allocate a syncpt conversation with a TP
that is served by an APPC/MVS server. During the
processing to receive the allocate request, an error
occurred when the APPC/MVS Receive_Allocate
service was attempting to interface with the system
syncpoint manager (RRS/MVS). The allocate was not
received by the server TP.

In the message text:

return_code The return code value from an
RRS/MVS service that failed, causing
the receive allocate request to fail and
be rejected by APPC/MVS.

Source: APPC/MVS

Detecting Module:
ATBVSPA

System Action: The system rejects the request with a
sense code of TP_not_available_retry (X'084B6031').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the
support center for the system that rejected the allocate
request. Provide the sense code and the message
explanation.

ATB70051I APPC/MVS detected a protocol
violation during an Exchange Log
Name processing. Reason Code:
reason_code

Explanation: During exchange-log-name processing,
an LU detected an error in the data sent by its partner
LU. A reason code further explains the error by
identifying the protocol violation. Message ATB206E or
ATB218E is also issued when this error occurs, and
identifies the local and partner LUs.

In the message text, reason_code is one of the
following:

01 EXCHANGE LOG NAME GDS VARIABLE
FORMAT ERROR: An exchange log name
GDS variable received in reply to an exchange
log name request initiated by the local LU
contains a format error.

04 EXCHANGE LOG NAME GDS VARIABLE
FORMAT ERROR: An exchange log name
GDS variable received as part of an exchange
log name request initiated by the partner LU
contains a format error.

05 UNEXPECTED DATA RECEIVED FROM
INITIATOR: Unexpected data was received
from a partner who was initiating a cold-start
exchange log name transaction.

06 DEALLOCATE ABEND OF CONVERSATION
NOT RECEIVED: A deallocation of the
exchange logname or resynchronization
transaction conversation from the initiator was
expected, but not received.

07 UNEXPECTED STATUS DATA RECEIVED
FROM PARTNER: Unexpected status data was
received from a partner who was replying to an
exchange log name or resynchronization
transaction initiated by the local LU.

08 NO DATA RECEIVED FROM THE PARTNER:
During a resynchronization or exchange log
name transaction exchange, the partner
responded but failed to send GDS variable
data containing the state of the partner LU.

09 UNEXPECTED DATA RECEIVED FROM
PARTNER: Unexpected data was received
from a partner who was replying to an
exchange log name or resynchronization
transaction initiated by the local LU.

10 INVALID STATUS DATA RECEIVED FROM
THE PARTNER: Status data that was invalid
for the reply was received by the initiator of the
exchange log name or resynchronization
transaction.

11 NO DATA RECEIVED FROM THE INITIATOR:
The initiator of the SNA service TP request
failed to send GDS variable data describing the
request.

12 TOO MUCH DATA RECEIVED FROM THE
INITIATOR: The initiator of the SNA service TP
request sent more than the expected amount
of GDS variable data for the request.

13 INVALID STATUS DATA RECEIVED FROM
THE INITIATOR: Status data that was invalid
for the request was received by the partner of
the exchange log name or resynchronization
transaction.

16 SYNCPT CAPABILITIES NEGOTIATION NOT

11-20 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

ALLOWED: The partner attempted to negotiate
syncpt capabilities while there was outstanding
resynchronization work to be performed
between the local and partner LUs.

18 SYNCPT CAPABILITIES DO NOT MATCH:
The syncpt capabilities sent in an exchange
log name GDS variable for a warm-start
exchange do not match the capabilities
previously negotiated by the local and partner
LUs.

Source: APPC/MVS

Detecting Module:
ATBPCRS

System Action: If this message is issued by
APPC/MVS resynchronization processing,
resynchronization does not complete successfully. If this
message is issued during an exchange log name
interchange preceding a protected conversation allocate
or inbound attach request, the protected conversation
between the local and partner LU is not allocated. No
protected conversations between the local and partner
LU will be allocated until the protocol violation can be
resolved.

The LU that made the protocol violation receives this
message as log data; the LU that detected the error
may have written additional diagnostic information into
its system log to identify the violation made by the
recipient of this message.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Examine the log
of the partner LU’s system. If a protocol violation was
detected in the local system’s Exchange Log Names
GDS variable,the remote system may have generated
diagnostic information itself. This information may help
to diagnose the cause of a protocol violation.

ATB70052I APPC/MVS detected a warm/cold log
status mismatch during an Exchange
Log Name processing.

Explanation: This message is issued during an
exchange log name transaction when the partner LU
has detected a warm/cold log status mismatch.
Message ATB210E is issued on the system that
detected the mismatch.

The LU that has the cold status receives this message
as log data. The LU that detected the error writes this
message into the logrec data set, with additional
diagnostic information to assist in diagnosing the
problem.

Source: APPC/MVS

Detecting Module:
ATBPCRS

System Action: If this message is issued by
APPC/MVS resynchronization processing,
resynchronization does not continue. Resynchronization
will automatically be attempted again at a later time. If
this message is issued during an exchange log name
interchange preceding a protected conversation allocate
or inbound attach request, the protected conversation
between the local and partner LU is not allocated. No
protected conversations between the local and partner
LU will be allocated until the warm/cold mismatch can
be resolved.

Additional diagnostic information is written into the
logrec data set.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: To resolve the
warm/cold mismatch, see z/OS MVS Planning:
APPC/MVS Management.

ATB70053I APPC/MVS detected a log name
mismatch during an Exchange Log
Name processing.

Explanation: This message is issued during an
exchange log name transaction when the partner LU
has detected a log name mismatch. Message ATB211E
is issued on the system that detected the log name
mismatch.

The LU that provided the reply containing the conflicting
log name receives this message as log data; the LU
that detected the error writes this message into the
logrec data set, with additional diagnostic information to
assist in diagnosing the problem.

Source: APPC/MVS

Detecting Module:
ATBPCRS

System Action: If this message is issued during
APPC/MVS resynchronization processing to resolve
incomplete units of recovery, resynchronization does not
continue. Resynchronization will be attempted again
automatically at a later time.

If this message is issued during an exchange log name
interchange preceding a protected conversation allocate
or inbound attach request, the protected conversation
between the local and partner LU is not allocated. No
protected conversations between the local and partner
LU will be allocated until the warm/cold mismatch can
be resolved.

Symptom records are written to the logrec data set to
record the error condition and record diagnostic data.

Chapter 11. Error_Extract Reason Codes and Messages 11-21

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: To resolve the
warm/cold mismatch, z/OS MVS Planning: APPC/MVS
Management.

ATB70054I Conversation was terminated because
a protocol violation was detected by
LU partner_lu during a syncpoint
processing. Reason code = rsncode
intrsncode.

Explanation: The partner LU has detected a response
sent by the local LU that violates the syncpoint
exchange protocol during the syncpoint processing of a
logical unit of work. Message ATB220I is issued for this
error condition on the partner LU’s system, and
identifies the local LU and the logical unit of work
identifier.

In the message text:

partner_lu The network-qualified name of the
partner LU that detected the protocol
violation

rsncode One of the following:

01 NO PS HEADER WAS
RECEIVED

02 EXPECTED PS HEADER
WAS NOT RECEIVED

03 EXPECTED STATUS WAS
NOT RECEIVED

04 UNEXPECTED RETURN
CODE WAS RECEIVED

05 UNEXPECTED DATA WAS
RECEIVED

06 CONVERSATION STATE
WAS INVALID

intrsncode Information for IBM use only.

Source: APPC/MVS

Detecting Module:
ATBPCPR, ATBPCBO, ATBPCDS, ATBPCCM,
ATBPCEU, ATBPCCE

System Action: The syncpoint processing continues,
but the protected conversation is deallocated by the
partner LU that detected the protocol violation, and the
state of the distributed resources is unknown; a heuristic
condition might exist.

The LU that made the protocol violation receives
message ATB70054I as log data.

Application Programmer Response: Notify the
system programmer.

Security Administrator Response: Contact the
designated support group for your installation.

ATB70055I Conversation was terminated due to a
break-tree condition or a terminating
syncpoint situation.

Explanation: This message is sent as log data when
a conversation is deallocated due to a break-tree
condition or when the last syncpoint (terminating
synchronization point) for a unit of work completes. For
an APPC/MVS TP issuing Error_Extract, this information
is presented to a TP for a conversational verb that
allows a deallocated_abend_* return code to be
presented.

Source: APPC/MVS

Detecting Module:
ATBPCCE

System Action: The called service returns a return
code of deallocated_abend_svc (decimal 30). The
conversation has been deallocated and all resources
associated with the conversation have been cleaned up.

ATB70056I APPC/MVS detected a protocol
violation during a Resynchronization
Exchange. Reason Code: rsncode.

Explanation: During the processing of a
resynchronization transaction request, an LU detected
an error in the data sent by its partner LU. A reason
code further explains the error by identifying the
protocol violation. Message ATB206E or ATB218E is
also issued on the detecting system when this error
occurs, and identifies the local and partner LUs.

In the message text, rsncode is one of the following:

01 EXCHANGE LOG NAME GDS VARIABLE
FORMAT ERROR

An Exchange Log Name GDS variable
received in reply to an exchange log name
request initiated by the local LU contains a
format error.

02 COMPARE STATES GDS VARIABLE NOT
RECEIVED

During a resynchronization exchange, the
partner did not send a Compare States GDS
variable reply containing the state of the logical
unit of work at the partner LU.

03 COMPARE STATES GDS VARIABLE FORMAT
ERROR

A Compare States GDS variable received in
reply to a resynchronization request initiated by
the local LU contains a format error.

14 COMPARE STATES GDS VARIABLE FORMAT
ERROR

11-22 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

A Compare States GDS variable received as
part of a resynchronization request initiated by
the partner LU contains a format error.

Source: APPC/MVS

Detecting Module:
ATBPCRS

System Action: This message is issued by
APPC/MVS resynchronization processing.
Resynchronization does not complete for an incomplete
unit of recovery.

The LU that made the protocol violation receives this
message as log data; the LU that detected the error
may have written additional diagnostic information into
it’s system log to identify the violation mad by the
recipient of this message.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Examine the log
of the partner LU’s system. If a protocol violation was
detected in the local system’s Exchange Log Names
GDS variable or Compare States GDS variable, the
remote system may have generated diagnostic
information itself. This information may help to diagnose
the cause of a protocol violation.

ATB70057I APPC/MVS detected an error during
Purge Log Name TP processing.
Reason Code: rsncode.

Explanation: A purge log name affinity (PLNA)
request either initiated or received by an APPC/MVS
logical unit failed.

In the message text:

rsncode One of the following:

1 Reply format error

2 Request format error

5 No data received
from partner

6 Unexpected data
received from
partner

7 Invalid status
received from
partner

8 No data received
from initiator

9 Too many buffers
received from
initiator

10 Invalid status
received from
initiator

Other values Internal reason
codes for IBM use
only.

Detecting Module:
ATBPCPL

System Action: A purge log name affinity (PLNA)
request failed. The system continues processing, but log
name affinities between an APPC/MVS logical unit and
a partner LU persist. The system on which the error
was incurred writes this message to the logrec data set,
and sends the message to the partner purge-log-name
TP.

Security Administrator Response: Use the
diagnostic records written to the logrec data set to
identify the reason for the failure.

Note: When internal reason codes are issued, report
the complete text of this message to your IBM
support center.

ATB70058I APPC/MVS cannot process allocate
request. Syncpoint conversations are
not supported when the partner LU
session capabilities are single session.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5) for an conversation with
synchronization level of syncpt (protected conversation).
APPC/MVS cannot process the inbound allocate
request because APPC/MVS does not support
allocating syncpt conversations with a partner LU that
does not a have parallel session capability.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of TP_not_available_no_retry
(X'084C0000').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the
support center for the system that sent the FMH-5.
Provide the sense code and the message explanation.

Chapter 11. Error_Extract Reason Codes and Messages 11-23

ATB70059I APPC/MVS cannot process allocate
request. Syncpoint conversations are
not supported on the SNASVCMG
session.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5) for an conversation with
synchronization level of syncpt (protected conversation).
APPC/MVS does not accept inbound allocate requests
for syncpt conversations on a session associated with
the SNASVCMG mode name.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of TP_not_available_retry (X'084B6031').

Application Programmer Response: Allocate the
syncpt conversation with a mode name other than
SNASVCMG.

ATB70061I APPC/MVS cannot process allocate
request. Conversation type specified
for a PLNA TP is not BASIC.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5) to initiate purge log name affinities
associated with the support of syncpt (protected)
conversations. APPC/MVS cannot process the inbound
allocate request because the FMH-5 for the attach
request contains a Conversation Type other than Basic.

Source: APPC/MVS

Detecting Module:
ATBFMFP

System Action: The system rejects the request with a
sense code of Conversation_Type_Mismatch
(X'10086034').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the
support center for the system that sent the FMH-5.
Provide the sense code and the message explanation.

ATB70999I An APPC/MVS internal error occurred:
Reason code: reason_code.

Explanation: APPC/MVS received an inbound allocate
request (FMH-5). An internal error occurred while
APPC/MVS was processing the request.

In the message text:

reason_code The internal reason code (in
hexadecimal), which is useful to the
IBM Support Center when diagnosing
the error.

Source: APPC/MVS

Detecting Module:
All

System Action: The system rejects the request with a
sense code of TP_not_available_no_retry
(X'084C0000').

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the IBM
Support Center. Provide the reason code shown in the
message text.

Error_Extract (ATB8) Messages
The Error_Extract service can return one of the messages described in this section
when APPC/MVS finds an error in the most recently completed call to another
APPC TP conversation service or CPI-C call. These messages appear on the
Message_text parameter on return from Error_Extract.

Error_Extract also returns error log information messages when a partner system or
TP finds an error in a call to an APPC TP conversation service or CPI-C call. For
descriptions of those error log information messages, see “Error_Extract Error Log
Information (ASB, ATB7) Messages” on page 11-4.

ATB80003I APPC data structures for the TP are in
use by another process.

Explanation: A TP called an APPC/MVS TP
conversation service. The system could not process the
request because APPC/MVS data structures for the TP
are in use by another process.

One of the following situations could cause this error:

v The TP called the TP conversation service while the
system was processing a call to another conversation
callable service for the same conversation. For
example, the previous call could have specified a
Notify_type of Notify_ecb, and the TP could have
called the second service before the system could

11-24 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

post the ECB (to indicate the end of asynchronous
processing for the previous call).

v An internal error occurred in APPC/MVS.

Source: APPC/MVS

Detecting Module:
ATBVSRB

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the conversation service.

Application Programmer Response: Ensure that
processing for a previous call to an APPC/MVS service
is complete before you call another APPC/MVS service.
If a Notify_type of Notify_ecb was specified on the
previous call, wait on the ECB before calling the next
service. If the problem persists, contact the system
programmer.

Security Administrator Response: Contact the IBM
Support Center.

ATB80004I System cannot process a call. A
Cleanup_TP request is in progress.

Explanation: A TP issued an APPC/MVS TP
conversation service while a Cleanup_TP request was
in progress for the same TP. A TP cannot call another
service while the system is processing a Cleanup_TP
request for the same TP.

Source: APPC/MVS

Detecting Module:
ATBVSRB

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the conversation service.

Application Programmer Response: Change the TP
so it does not call a conversation service while the
system is processing a Cleanup_TP request.

ATB80005I APPC/MVS could not retrieve side
information.

Explanation: A TP called the LU 6.2 Allocate or CPI-C
Initialize_Conversation service. An error occurred when
APPC/MVS read the side information entry for the
symbolic destination name specified on the request.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSIN

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the Allocate or Initialize_Conversation service.

The system writes a logrec data set record that
describes the error.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the IBM
Support Center. Provide the logrec data set error
record.

ATB80006I Error retrieving security information.

Explanation: A TP called the LU 6.2 Allocate or CPI-C
Initialize_Conversation service. An error occurred when
APPC/MVS tried to obtain information about the caller’s
security environment from the security product.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSCA

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the Allocate service. APPC/MVS writes a logrec
data set record that describes the error.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Validate that the
correct level of the security product is installed and
running. The return and reason codes from the security
product appear in section 5 of the symptom record in
the logrec data set. If your installation is using RACF,
see z/OS SecureWay Security Server RACF Messages
and Codes for explanations of the return and reason
codes.

ATB80008I Address space cannot use the system
base LU.

Explanation: A TP called the LU 6.2 Allocate or CPI-C
Initialize_Conversation service. The request did not
specify a local LU name, so APPC/MVS selected a local
LU to be the source of the conversation. The program is
running in an address space that is associated with an
alternate transaction scheduler. No base LU is defined
for the alternate scheduler. The system base LU is
owned by the APPC scheduler (ASCH), so the address
space in which the TP is running cannot use the system
base LU.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSIN

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the Allocate or Initialize_Conversation service.

Chapter 11. Error_Extract Reason Codes and Messages 11-25

Application Programmer Response: Do one of the
following:

v Contact the system programmer to determine if a
base LU can be defined for the alternate transaction
scheduler.

v Contact the system programmer to determine if a
NOSCHED base LU can be defined.

v Contact the operator to determine if other LUs are
available to the scheduler. These may be LUs
associated with that scheduler, or LUs not associated
with any scheduler (NOSCHED LUs). Change the TP
to use the ATBALC2 version of Allocate, and specify
the name of an LU available to the scheduler on the
Local_LU parameter.

v Ensure that the TP tries to allocate or initialize the
conversation from an address space that is able to
use the system base LU.

Operator Response: At the request of the application
programmer, enter a DISPLAY APPC,LU command to
determine if other LUs are available to the scheduler.

At the request of the system programmer, enter a SET
APPC=xx command to activate a newly defined LU in
the APPC/MVS configuration.

Security Administrator Response: At the request of
the application programmer, enter an LUADD statement
in an APPCPMxx parmlib member to define a base LU
for the alternate transaction scheduler or a NOSCHED
LU. Then ask the operator to enter a SET APPC=xx
command to activate the newly defined LU in the
APPC/MVS configuration.

ATB80009I No base LU defined for scheduler.

Explanation: A TP called the LU 6.2 Allocate or CPI-C
Initialize_Conversation service. The request did not
specify a local LU name, so APPC/MVS had to select a
local LU as the source of the conversation. The TP is
running in an address space that is associated with a
scheduler. No base LU is defined for the transaction
scheduler, and no system base LU is defined.
Therefore, APPC/MVS could not determine which LU to
use as the source of the conversation.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSIN

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the Allocate or Initialize_Conversation service.

Application Programmer Response: Do one of the
following:

v Contact the system programmer to determine if a
base LU can be defined for the transaction scheduler.

v Contact the system programmer to determine if a
NOSCHED base LU can be defined.

v Contact the operator to determine if other LUs are
available to the scheduler. These may be LUs
associated with that scheduler, or LUs not associated
with any scheduler (NOSCHED LUs). Change the TP
to use the ATBALC2 (or higher) version of Allocate
and specify the name of an LU available to the
scheduler on the Local_LU parameter.

Operator Response: At the request of the application
programmer, enter a DISPLAY APPC,LU command to
determine if other LUs are available to the scheduler.

At the request of the system programmer, enter a SET
APPC=xx command to activate a newly defined LU in
the APPC/MVS configuration.

Security Administrator Response: At the request of
the application programmer, enter an LUADD statement
in an APPCPMxx parmlib member to define a base LU
for the transaction scheduler or a NOSCHED LU. Then
ask the operator to enter a SET APPC=xx command to
activate the newly defined LU in the APPC/MVS
configuration.

ATB80010I Scheduler extract exit could not
identify active TP.

Explanation: A TP called an APPC/MVS conversation
service in an address space where more than one TP
was running. APPC/MVS called the transaction
scheduler extract exit to obtain the TP_ID for the active
TP. The exit returned a non-zero return code to
APPC/MVS.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSIN, ATBVSGC

System Action: One of the following:

v If the TP called the Allocate or Initialize_Conversation
service, the system returns a product_specific_error
(decimal 20) return code to the caller, and
APPC/MVS writes a symptom record in the logrec
data set

v If the TP called the LU 6.2 Get_Conversation or
CPI-C Accept_Conversation services, the system
returns a program_state_check (decimal 25) return
code to the caller, and APPC/MVS writes a symptom
record in the logrec data set

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: See the symptom
record in the logrec data set for a description of the
error. Check the return code from the transaction
scheduler extract exit in the Scheduler Extract Control
Block (ATBSECB) in section 5 of the symptom record.
The ATBSECB is in the first key-length-data structure in
section 5. See z/OS MVS Data Areas, Vol 1
(ABEP-DALT) for a description of the ATBSECB.

11-26 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

ATB80011I Storage not available for APPC internal
structures.

Explanation: A TP called an APPC/MVS conversation
service. APPC/MVS could not obtain enough storage to
process the request.

Source: APPC/MVS

Detecting Module:
ATBAMIC, ATBAMLM, ATBAMLP, ATBVSAL,
ATBVSDE, ATBAMDE, ATBAMEL, ATBAMRT,
ATBAMTS, ATBVSGC, ATBVSCD, ATBVSCF,
ATBVSIN, ATBVSPT, ATBVSFL, ATBVSRC, ATBVSRT,
ATBVSSD, ATBVSSR, ATBVSST, ATBVSRB

System Action: The system returns a
product_specific_error (decimal 20) or
resource_failure_no_retry (decimal 26) return code to
the caller of the conversation service. APPC/MVS writes
a logrec data set error record that describes the error.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the IBM
Support Center. Provide the logrec data set error
record.

ATB80014I Service interrupted by call to
Cleanup_TP service.

Explanation: A TP called an APPC/MVS conversation
service. While APPC/MVS was processing the call, a
program called the Cleanup_TP service to clean up
resources for the TP that owns the conversation.
APPC/MVS terminates all services in progress on all
conversations for the TP before processing the
Cleanup_TP request.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSCF, ATBVSGA, ATBVSGC,
ATBVSIN, ATBVSRC, ATBVSSR, ATBVSTR,
ATBVS3XT, ATBVS4XT, ATBVSCA

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the interrupted conversation service.

Application Programmer Response: Change the
program so it does not call the Cleanup_TP service until
all other calls to conversation services are complete.

ATB80016I An internal error occurred in APPC
processing.

Explanation: A TP called an APPC/MVS conversation
service. An internal error occurred in APPC processing.

Source: APPC/MVS

Detecting Module:
ATBVSRB, ATBAMAL, ATBAMDE, ATBAMLM,
ATBAMRC, ATBAMRE, ATBAMSR, ATBVSRC,
ATBVSFS, ATBVSDE, ATBVSSD, ATBVSAL,
ATBVSGC, ATBVSIN, ATBAMPR

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the conversation service. APPC/MVS writes a
logrec data set record that describes the error. The
system might request an SVC dump.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the IBM
Support Center. Provide the logrec data set error record
and the SVC dump (if one is available).

ATB80020I Information about local LU was not
available to APPC/MVS.

Explanation: A TP called the LU 6.2 or CPI-C Allocate
service. APPC/MVS could not find information about the
local LU. An internal error prevented APPC/MVS from
locating the LU.

Source: APPC/MVS

Detecting Module:
ATBAMAL

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the Allocate service. APPC/MVS writes a logrec
data set record that describes the error. The system
might request an SVC dump.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the IBM
Support Center. Provide the logrec data set error record
and the SVC dump (if one is available).

ATB80023I Processing for service interrupted by
Deallocate_abend.

Explanation: A TP called an APPC/MVS conversation
service. While the conversation service was in progress,
the TP also called the Deallocate service with a
Deallocate_type of Deallocate_abend (to deallocate the
conversation abnormally). APPC/MVS abnormally ended
the conversation and ended processing for the call to
the conversation service. (This message is expected if
you deallocate the conversation abnormally to
deliberately interrupt processing for the service).

Source: APPC/MVS

Chapter 11. Error_Extract Reason Codes and Messages 11-27

Detecting Module:
ATBAMAL, ATBAMCF, ATBAMCD, ATBAMDE,
ATBAMFL, ATBAMPT, ATBAMRC, ATBAMSD,
ATBAMSR, ATBAMRT, ATBAMLM

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the interrupted conversation service.

Application Programmer Response: Change the TP
so it does not call the Deallocate service with a
Deallocate_type of Deallocate_abend while a call to
another conversation service is in progress.

ATB80025I A previous error left the conversation
in an undefined state.

Explanation: A TP called an APPC/MVS conversation
service. APPC/MVS cannot process the request
because a previous error left the conversation in an
undefined state.

Source: APPC/MVS

Detecting Module:
ATBAMCF, ATBAMDE, ATBAMPT, ATBAMSD,
ATBAMSR

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the conversation service.

Application Programmer Response: Call the
Deallocate service with a Deallocate_type of
Deallocate_abend (to deallocate the conversation
abnormally and free the resources for the conversation).
APPC/MVS will end the current session.

ATB80026I An unexpected resource failure
occurred.

Explanation: A TP called an APPC/MVS conversation
service. APPC/MVS found a resource failure while
processing a service that does not return the
resource_failure_no_retry (decimal 26) or
resource_failure_retry (decimal 27) return codes.

Source: APPC/MVS

Detecting Module:
ATBAMLS

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the conversation service. The system writes a
logrec data set record that describes the error.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the IBM

Support Center. Provide the logrec data set error
record.

ATB80033I Address space in which TP is running
cannot use system base LU.

Explanation: A TP called the LU 6.2 Allocate or CPI-C
Initialize_Conversation service. The request did not
specify a local LU name, so APPC/MVS had to select a
local LU as the source of the conversation. A previous
call to the Set_AS_Attributes service prohibited the
address space in which the program is running from
using the system base LU. Either the address space is
not connected to a scheduler, or the address space is
connected to a scheduler for which a base LU is not
defined.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSIN

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the conversation service.

Application Programmer Response: Do one of the
following:

v If the address space is not connected to a scheduler,
see if the transaction scheduler for the address space
has terminated. If so, ask the operator to start the
scheduler again.

v Contact the system programmer to determine if a
base LU can be defined for the alternate transaction
scheduler.

v Contact the system programmer to determine if a
NOSCHED base LU can be defined.

v Contact the operator to determine if other LUs are
available to the scheduler. These may be LUs
associated with that scheduler, or LUs not associated
with any scheduler (NOSCHED LUs). Change the TP
to use the ATBALC2 version of Allocate, and specify
the name of an LU available to the scheduler on the
Local_LU parameter.

v Ensure that the TP tries to allocate or initialize the
conversation from an address space that is able to
use the system base LU.

Operator Response: At the request of the application
programmer, enter a DISPLAY APPC,LU command to
determine if other LUs are available to the scheduler.

At the request of the system programmer, enter a SET
APPC=xx command to activate a newly defined LU in
the APPC/MVS configuration.

Security Administrator Response: At the request of
the application programmer, enter an LUADD statement
in an APPCPMxx parmlib member to define a base LU
for the alternate transaction scheduler or a NOSCHED
LU. Then ask the operator to enter a SET APPC=xx

11-28 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

command to activate the newly defined LU in the
APPC/MVS configuration.

ATB80034I No system base LU defined to
APPC/MVS.

Explanation: A TP called the LU 6.2 Allocate or CPI-C
Initialize_Conversation service. The request did not
specify a local LU name, so APPC/MVS had to select a
local LU as the source of the conversation. The
program is running in an address space that is not
connected to a scheduler. No system base LU is
defined, so APPC/MVS could not determine which LU to
use as the source of the conversation.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSIN

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the Allocate or Initialize_Conversation service.

Application Programmer Response: Contact the
operator to determine if a NOSCHED LU is available. If
one is available, specify the name of the NOSCHED LU
as the local LU on the call. If one is not available, do
one of the following:

v Ask the system programmer to define a NOSCHED
LU to the APPC/MVS configuration. Then, if a call to
Allocate was originally interrupted, replace the call to
Allocate with the ATBALC2 version of Allocate. On
the call, specify the name of the NOSCHED LU as
the local LU.

v Ask the system programmer to define a NOSCHED
base LU to the APPC/MVS configuration.

Operator Response: At the request of the application
programmer, enter a DISPLAY APPC,LU command to
determine if a NOSCHED LU is available.

At the request of the system programmer, enter a SET
APPC=xx command to activate a newly defined LU in
the APPC/MVS configuration.

Security Administrator Response: At the request of
the application programmer, enter an LUADD statement
in an APPCPMxx parmlib member to define a
NOSCHED LU or a NOSCHED base LU. Then ask the
operator to enter a SET APPC=xx command to activate
the newly defined LU in the APPC/MVS configuration.

ATB80036I Buffer storage not available for
Receive processing.

Explanation: A TP called an APPC/MVS conversation
service. APPC/MVS could not obtain enough storage to
store data to be sent or received in the conversation.
This might be an intermittent error.

Source: APPC/MVS

Detecting Module:
ATBAMCU, ATBAMRC, ATBAMEL

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the conversation service.

Application Programmer Response: Try to run the
application again. If the error persists, contact the
system programmer.

Security Administrator Response: Ensure that the
amount of buffer storage specified on the BUFSTOR
parameter in the start procedure for APPC/MVS
(ATBINITM in SYS1.PROCLIB) is large enough to
handle the data to be transmitted, and that the
CONVBUFF parameter specifies a percentage of buffer
storage that is large enough to handle the sending and
receiving of data for the conversation. If you accepted
the default value for BUFSTOR (which is approximately
one third of free auxiliary storage) when you started
APPC, ensure that the system has enough auxiliary
storage to handle APPC processing. For more
information about how to control the buffer storage limit,
see z/OS MVS Planning: APPC/MVS Management. If
the problem persists, contact the IBM Support Center.

ATB80037I Value specified on Conversation_type
parameter is not valid.

Explanation: A TP called the LU 6.2 Allocate or CPI-C
Set_Conversation_Type service to set the
Conversation_type characteristic for a conversation. The
Conversation_type parameter specified a value that is
not valid.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSST

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller.

Application Programmer Response: Do one of the
following:

v If the TP called the LU 6.2 Allocate service, see the
description of the Allocate service in “Allocate” on
page 8-1 for explanations of valid Conversation_type
values. Enter a valid Conversation_type value on the
call to the Allocate service.

v If the TP called the CPI-C Set_Conversation_Type
service, see the description of the
Set_Conversation_Type service in CPI-C Reference
for a description of valid values for this parameter.
Enter a valid Conversation_type value on the call.

Chapter 11. Error_Extract Reason Codes and Messages 11-29

ATB80038I Value specified on Sync_level
parameter is not valid.

Explanation: A TP called the LU 6.2 Allocate or CPI-C
Set_Sync_Level service to set the Sync_level
characteristic for a conversation. The Sync_level
parameter specified a value that is not valid.

Source: APPC/MVS

Detecting Module:
ATBVSSV, ATBVSAL

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller.

Application Programmer Response: Do one of the
following:

v If the TP called the LU 6.2 Allocate service, see the
description of the Allocate service in “Allocate” on
page 8-1 for explanations of valid Sync_level values.
Enter a valid Sync_level value on the call to the
Allocate service.

v If the TP called the CPI-C Set_Sync_Level service,
see the description of the Set_Sync_Level service in
the CPI-C Reference for explanations of valid values
for the sync_level parameter. Specify a valid value on
the sync_level parameter.

ATB80039I Value specified on Security_type
parameter is not valid.

Explanation: A TP called the LU 6.2 Allocate service
to allocate a conversation with another program. The
Security_type parameter specified a value that is not
valid.

Source: APPC/MVS

Detecting Module:
ATBVSAL

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Allocate service.

Application Programmer Response: See the
description of the Allocate service in “Allocate” on
page 8-1 for explanations of valid Security_type values.
Enter a valid Security_type value on the call to the
Allocate service.

ATB80040I Value specified on TP_name_length
parameter is not valid.

Explanation: A TP called the LU 6.2 Allocate or CPI-C
Set_TP_Name service to set the TP_name
characteristic for a conversation. The TP_name_length
parameter specified a value that is not valid.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSSV

System Action: One of the following:

v If the TP called the LU 6.2 Allocate service, the
system returns a parameter_error (decimal 19) return
code to the caller

v If the TP called the CPI-C Set_TP_Name service, the
system returns a program_parameter_check (decimal
24) return code to the caller.

Application Programmer Response: One of the
following:

v If the TP called the LU 6.2 Allocate service, specify a
value between 0 and 64 on the TP_name_length
parameter

v If the TP called the CPI-C Set_TP_Name service,
specify a value between 1 and 64 on the
TP_name_length parameter.

ATB80041I TP name length is zero, but no
symbolic destination name is
specified.

Explanation: A TP called the Allocate service to
allocate a conversation with another program. The
TP_name_length parameter specified a value of zero,
indicating that the system should use the symbolic
destination name to determine the name of the partner
TP. The call to the Allocate service specified a blank
symbolic destination name on the Sym_dest_name
parameter, which is not allowed when the
TP_name_length parameter specifies a value of zero.

Source: APPC/MVS

Detecting Module:
ATBVSAL

System Action: The system returns a parameter_error
(decimal 19) return code to the caller of the Allocate
service.

Application Programmer Response: When calling
the Allocate service, do one of the following:

v Specify a valid symbolic destination name on the
Sym_dest_name parameter

v Enter the name of the partner TP on the TP_name
parameter, and enter the length of the TP name on
the TP_name_length parameter.

ATB80042I Caller is not authorized to specify
User_token or TP_ID parameters.

Explanation: A TP called the Allocate service to
allocate a conversation with another program. The caller
is not running in supervisor state or PSW key 0-7. The
caller specified one or both of the following:

11-30 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v A field on the User_token parameter whose first byte
does not contain a hexadecimal zero (X'00')

v A field on the TP_ID parameter that does not contain
all binary zeros.

To specify a User_token or TP_ID, the TP must be
running in supervisor state or PSW key 0-7.

Source: APPC/MVS

Detecting Module:
ATBVSAL

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Allocate service.

Application Programmer Response: Do one of the
following:

v Issue the MODESET assembler macro to enter
supervisor state, or issue the SPKA assembler
instruction to change to PSW key 0-7, before the TP
calls the Allocate service

v Enter a User_token whose first byte contains a
hexadecimal zero (X'00') and a TP_ID that contains
all binary zeros (unauthorized programs must specify
these values when calling the Allocate service).

ATB80043I Calling program did not specify both a
user ID and a password and/or
surrogate authorization check failed.

Explanation: A TP called the Allocate service to
allocate a conversation with another program. The
Security_type parameter specified a value of
Security_pgm. This Security_type requires one of the
following:

v Both the User_ID and Password parameters contain
values, or

v The User_ID parameter contains a valid value and
the TP calling the Allocate service has been granted
surrogate user authority for this User_ID. This implies
that this User_ID is a valid MVS user ID on the
allocating system. For example, the user ID can be
no more than eight characters long.

Source: APPC/MVS

Detecting Module:
ATBVSAL

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Allocate service.

Application Programmer Response: Specify valid
values on the User_ID and Password parameters or
specify a valid User_ID value and obtain surrogate user
authorization for the User_ID. For more information, see
z/OS MVS Planning: APPC/MVS Management.

ATB80044I Value symdestname specified on
Sym_dest_name parameter is not
defined in active side information data
set.

Explanation: A TP tried to allocate or initialize a
conversation with another program. The
Sym_dest_name parameter specified a value that is not
defined in the active side information data set.

In the message text:

symdestname The symbolic destination name
specified on the Sym_dest_name
parameter that could not be found in
the active side information data set.

Source: APPC/MVS

Detecting Module:
ATBSD1G

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Allocate or Initialize_Conversation
service.

Application Programmer Response: Do one of the
following:

v Validate that the correct symbolic destination name is
specified on the Sym_dest_name parameter. If the
name is correct, ask the system programmer to add
the name to the side information data set.

v Specify eight blanks on the Sym_dest_name
parameter, and specify valid values on the TP_name
and Partner_LU_name parameters on the call to
Allocate.

Security Administrator Response: At the request of
the application programmer, add the symbolic
destination name to the side information data set (using
the DESTNAME parameter).

ATB80045I Mode name SNASVCMG is not valid.

Explanation: A TP called the Allocate service to
allocate a conversation with another program. The
Mode_name parameter specified the value
SNASVCMG, which is a reserved logon mode that
VTAM uses to exchange information with other LUs.
You cannot specify SNASVCMG as a logon mode on
calls to the Allocate service.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSCA

System Action: The system returns a parameter_error
(decimal 19) return code to the caller of the Allocate
service.

Application Programmer Response: If necessary,

Chapter 11. Error_Extract Reason Codes and Messages 11-31

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|

ask the system programmer to provide a valid mode
name. Then do one of the following:

v Specify a valid mode name on the Mode_name
parameter

v Ask the system programmer to update the mode
name for Sym_dest_name used in the side
information data set.

Security Administrator Response: At the request of
the application programmer, provide a valid mode name
(one that is defined in the logon mode table, a compiled
version of which exists in SYS1.VTAMLIB). If necessary,
update the mode name in the side information data set.

ATB80046I An allocate request for an SNA service
TP name beginning with X'06' is
allowed only for programs running in
supervisor state or with PSW key 0-7.

Explanation: A TP called the Allocate service to
allocate a conversation with another program. The call
specified an SNA service TP name that begins with
X'06', which is not valid unless the caller is running in
supervisor state or with PSW key 0-7.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSCA

System Action: The system returns a parameter_error
(decimal 19) return code to the caller of the Allocate
service.

Application Programmer Response: Specify a valid
SNA service TP name for the caller’s environment, or
switch the program to run in supervisor state or with
PSW key 0-7.

ATB80047I Value specified on User_token
parameter is not valid.

Explanation: A TP called the Allocate service to
allocate a conversation with another program.
APPC/MVS could not process the User_token specified
on the call.

Source: APPC/MVS

Detecting Module:
ATBVSAL

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Allocate service. The security product
issues abend X'9C7' to indicate that the request
specified an incorrect User_token. The security product
writes a logrec data set record that describes the error.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: See the
documentation for the security product to determine the
response to the situation described in the logrec data
set record.

ATB80048I Value specified on Local_LU_name
parameter is not valid.

Explanation: A TP called the Allocate service to
allocate a conversation with another program.
APPC/MVS could not process the Local_LU_name
specified on the call. The specified Local LU is
associated with a scheduler other than the scheduler
that is connected to the address space in which the TP
is running.

Source: APPC/MVS

Detecting Module:
ATBVSAL

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Allocate service.

Application Programmer Response: Specify one of
the following on the Local_LU_name parameter:

v Eight blanks, which will cause APPC/MVS to default
to use the base LU for the scheduler

v The name of an LU owned by the scheduler
associated with address space

v The name of a NOSCHED LU.

ATB80049I Value specified on Local_LU_name
parameter is not the name of the
system base LU or the name of a
NOSCHED LU.

Explanation: A TP called the Allocate service to
allocate a conversation with another program.
APPC/MVS could not process the local LU name
specified on the call because all of the following
conditions exist:

v The address space from which the allocate request
was issued is not connected to a scheduler

v The specified local LU is not the system base LU

v The specified local LU is not a NOSCHED LU.

Source: APPC/MVS

Detecting Module:
ATBVSAL

System Action: The system returns a parameter_error
(decimal 19) return code to the caller of the Allocate
service.

Application Programmer Response: Do one of the
following:

11-32 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v Ask the operator to provide the name of the system
base LU or the name of a NOSCHED LU; specify the
name of the LU on the Local_LU_name parameter

v Specify eight blanks on the Local_LU name
parameter, which causes APPC/MVS to default to
use the system base LU.

Specify one of the listed values on the Local_LU name
parameter.

Operator Response: At the request of the application
programmer, enter a DISPLAY APPC,LU command to
display the LUs that are currently defined to the
APPC/MVS configuration. Provide the application
programmer with a valid LU name.

At the request of the system programmer, enter a SET
APPC=xx command to add the newly defined LU to the
APPC/MVS configuration.

Security Administrator Response: If necessary,
define a NOSCHED LU or a system base LU in the
APPCPMxx parmlib member. Ask the operator to enter
a SET APPC command to add the LU to the
APPC/MVS configuration.

ATB80050I Allocate request specified system base
LU name on Local_LU_name
parameter. Alternate scheduler cannot
use that LU name.

Explanation: A TP called the Allocate service to
allocate a conversation with another program.
APPC/MVS could not process the local LU name
specified on the call. The TP is running in an address
space that is associated with an alternate scheduler.
The specified local LU name is the system base LU
name, but the LU is associated with the APPC/MVS
transaction scheduler. TPs running under an alternate
scheduler cannot specify the LU as the local LU on an
allocate request.

Source: APPC/MVS

Detecting Module:
ATBVSAL

System Action: The system returns a parameter_error
(decimal 19) return code to the caller of the Allocate
service.

Application Programmer Response: Ask the
operator to provide one of the following:

v The name of the LU associated with the alternate
transaction scheduler

v The name of a NOSCHED LU.

Specify the provided LU name on the Local_LU name
parameter.

Operator Response: At the request of the application
programmer, enter a DISPLAY APPC,LU command to

display the LUs that are currently defined to the
APPC/MVS configuration. Provide the application
programmer with a valid LU name.

At the request of the system programmer, enter a SET
APPC=xx command to add a newly defined LU to the
APPC/MVS configuration.

Security Administrator Response: If necessary,
define a NOSCHED LU or an LU associated with the
alternate scheduler in the APPCPMxx parmlib member.
Ask the operator to enter a SET APPC=xx command to
add the LU to the APPC/MVS configuration.

ATB80051I Allocate request for SNA service TP is
not valid when Conversation_type is
mapped.

Explanation: A TP called the Allocate service to
allocate a conversation with a SNA service TP. The call
specified a Conversation_type of 1
(Mapped_conversation), which is not valid when
allocating a SNA service TP.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSCA

System Action: The system returns a parameter_error
(decimal 19) return code to the caller of the Allocate
service.

Application Programmer Response: Specify a
conversation_type of 0 (Basic_conversation) on the
Conversation_type parameter.

ATB80052I LU specified on Local_LU_name
parameter is not defined to APPC/MVS.

Explanation: A TP called the Allocate service to
allocate a conversation with another program.
APPC/MVS cannot process the LU name specified on
the Local_LU_name parameter. The LU is not defined to
APPC/MVS.

Source: APPC/MVS

Detecting Module:
ATBVSAL

System Action: The system returns a parameter_error
(decimal 19) return code to the caller of the Allocate
service.

Application Programmer Response: Contact the
operator to determine which LUs are currently defined
to the APPC/MVS configuration. Enter one of the
following on the Local_LU_name parameter:

v A valid LU name

v Eight blanks, which will cause APPC/MVS to default
to use the base LU for the scheduler.

Chapter 11. Error_Extract Reason Codes and Messages 11-33

If necessary, see the description of the Allocate service
in “Allocate” on page 8-1 for the types of local LUs for
which an address space can allocate.

Operator Response: At the request of the application
programmer, enter a DISPLAY APPC,LU command to
display the LUs that are currently defined to the
APPC/MVS configuration. Provide the application
programmer with a valid LU name.

ATB80053I Value specified on TP_ID parameter is
not valid.

Explanation: A TP called the Allocate service to
allocate a conversation with another program.
APPC/MVS cannot find the TP associated with the
TP_ID specified on the call. The TP does not exist in
the caller’s address space (it might exist in another
address space).

Source: APPC/MVS

Detecting Module:
ATBVSAL

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Allocate service.

Application Programmer Response: Specify a valid
TP_ID on the call to the Allocate service.

ATB80054 Value specified on Timeout_Value
parameter is not valid.

Explanation: A TP called the LU 6.2 Allocate or
Set_TimeOut_Value service. The Timeout_Value
parameter specified a value that is not valid.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSST

System Action: The system returns a
Program_Parameter_Check (decimal 24) return code to
the caller of the specified conversation service.

Application Programmer Response: See “Allocate”
on page 8-1 or “Set_TimeOut_Value” on page 8-131 for
an explanation of the Timeout_Value parameter. Specify
a valid value on the Timeout_Value parameter.

ATB80055I APPC/MVS could not create required
internal data structures.

Explanation: A TP called the Allocate service to
allocate a conversation with another program.
APPC/MVS tried to build the data structures that are
necessary to maintain a conversation. APPC/MVS could
not create those data structures at the time it issued this
message.

Source: APPC/MVS

Detecting Module:
ATBVSAL

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the Allocate service.

Application Programmer Response: Call the Allocate
service again. If the problem persists, contact the
system programmer.

Security Administrator Response: Contact the IBM
Support Center.

ATB80058I An abend occurred in APPC/MVS.

Explanation: A TP called an APPC/MVS conversation
service. An abend occurred while APPC/MVS was
processing the conversation service.

Source: APPC/MVS

Detecting Module:
All

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the service. The system requests an SVC
dump.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the IBM
Support Center. Provide the SVC dump.

ATB80059I Value plu_name specified on
Partner_LU_name parameter is not
valid.

Explanation: A TP called the LU 6.2 or CPI-C Allocate
service to allocate a conversation with another program.
The request specified a partner LU name that is not
valid. The following are examples of possible reasons
why the partner LU name is not valid:

v It contained one or more null characters; the partner
LU name must contain characters from the type A
character set

v It contained one or more imbedded blanks (trailing
blanks are allowed for the LU 6.2 Allocate service)

v It contained one or more imbedded or trailing blanks
(trailing blanks are not allowed for CPI-C Allocate
service).

Note: The trailing blank will not appear in the
message text.

11-34 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v It contained more than eight characters and was not
network-qualified; a partner LU name that is not
network-qualified cannot contain more than eight
characters.

In the message text:

plu_name The partner LU name specified on the
Partner_LU_name parameter.

Source: APPC/MVS

Detecting Module:
ATBAMAL

System Action: The system returns a parameter_error
(decimal 19) return code to the caller of the Allocate
service.

Application Programmer Response: Do one of the
following:

v If the TP called the LU 6.2 Allocate service, see the
description of the Allocate service in “Chapter 8.
APPC/MVS TP Conversation Callable Services” on
page 8-1 for explanations of valid values for the
Partner_LU_name parameter. Specify a valid value
on the Partner_LU_name parameter.

v If the TP called the CPI-C Allocate service, see the
description of the Set_Partner_LU_Name service in
CPI-C Reference for explanations of valid values for
the partner_LU_name parameter.

ATB80060I Value specified on the Return_control
parameter is not valid.

Explanation: A TP called the LU 6.2 Allocate or CPI-C
Set_Return_Control service to set the Return_control
characteristic for a conversation. The Return_control
parameter specified a value that is not valid.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSSV

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller.

Application Programmer Response: Do one of the
following:

v If the TP called the LU 6.2 Allocate service, see the
description of the Allocate service in “Allocate” on
page 8-1 for explanations of valid Return_control
values. Specify a valid value on the Return_control
parameter.

v If the TP called the CPI-C Set_Return_Control
service, see the description of the CPI-C
Set_Return_Control service in CPI-C Reference for

explanations of valid values for the return_control
parameter. Specify a valid value on the return_control
parameter.

ATB80061I Session for mode name mode_name is
not available. Partner LU: plu_name,
local LU: loclu_name.

Explanation: A TP called the Allocate service to
allocate a conversation with another program. The caller
specified a value of Immediate (1) on the Return_control
parameter. No session is currently available for the
mode name, so APPC/MVS cannot establish the
conversation.

In the message text:

mode_name The mode name specified in the side
information or on the Mode_name
parameter on the call to Allocate.

plu_name The partner LU name specified on the
Partner_LU_name parameter.

loclu_name The name of the local LU for which
APPC/MVS cannot establish a
session.

Source: APPC/MVS

Detecting Module:
ATBLUMB

System Action: The system returns an unsuccessful
(decimal 28) return code to the caller of the Allocate
service.

Application Programmer Response: Do one of the
following:

v Specify a value of When_session_allocated (0) on
the Return_control parameter

v Call the Get_TP_Properties service to return the local
and partner LU names for which a session is not
available. Ask the operator to provide a mode name
that has available sessions for the specified LUs.
Specify that mode name on the Mode_name
parameter.

Operator Response: At the request of the application
programmer, enter a DISPLAY APPC,LU,[LIST|ALL]
command to determine if a session is available for the
specified local and partner LUs.

ATB80062I Local LU LU_name is terminating. The
system cannot establish a session.

Explanation: A TP called the Allocate service to
allocate a conversation with another program.
APPC/MVS cannot establish a session because the
local LU is terminating.

In the message text:

Chapter 11. Error_Extract Reason Codes and Messages 11-35

LU_name The name of the local LU that is
terminating.

Source: APPC/MVS

Detecting Module:
ATBLUMB

System Action: The system returns a parameter_error
(decimal 19) return code to the caller of the Allocate
service.

Application Programmer Response: Verify that a
name is specified on the Local_LU_name parameter
and that the name is correct. If the name is correct,
contact the operator to determine if the status of the LU
is expected.

Operator Response: At the request of the application
programmer, enter a DISPLAY APPC,LU,SUMMARY
command to verify that the LU is not active. If the LU is
not active, enter a SET APPC=xx command to activate
the LU. On the command, specify the APPCPMxx
parmlib member in which the LU is added.

ATB80063I No default mode name is available to
establish a session.

Explanation: A TP called the Allocate service to
allocate a conversation with another program. The
request did not specify a mode name in the side
information or on the Mode_name parameter, so
APPC/MVS tried to find a mode name that was in effect
for the local and partner LUs. APPC/MVS could not find
a mode name, which is necessary to define network
properties for the session.

Source: APPC/MVS

Detecting Module:
ATBLUMB

System Action: The system returns a parameter_error
(decimal 19) return code to the caller of the Allocate
service.

Application Programmer Response: Ask the system
programmer to provide a valid mode name. Specify a
valid mode name on the Mode_name parameter.

Security Administrator Response: At the request of
the application programmer, provide a valid mode name
(one that is defined in the logon mode table, a compiled
version of which exists in SYS1.VTAMLIB).

ATB80064I Local LU LU_name is not active.
APPC/MVS cannot establish a session.

Explanation: A TP called the Allocate service to
allocate a conversation with another program.
APPC/MVS cannot establish a conversation because
the local LU specified on the Local_LU_name parameter
is not in “active” or “outbound only” state.

In the message text:

LU_name The name of the local LU that is not
active.

Source: APPC/MVS

Detecting Module:
ATBLUMB

System Action: The system returns a parameter_error
(decimal 19) return code to the caller of the Allocate
service.

Application Programmer Response: Verify that the
name specified on the Local_LU_name parameter is
correct. If the name is correct, contact the system
programmer to determine why the LU is not in “active”
or “outbound only” state.

Security Administrator Response: At the request of
the application programmer, ensure that the local LU is
defined correctly in the VTAM application (APPL)
statement in SYS1.VTAMLST.

ATB80065I Partner LU plu_name is not active.
APPC/MVS cannot establish a session.

Explanation: A TP called the Allocate service to
allocate a conversation with another program.
APPC/MVS cannot establish the conversation. The
specified partner LU is defined to APPC/MVS on this
system, but the status of the LU is not “active” or
“outbound only”.

In the message text:

plu_name The partner LU name specified in the
side information or on the
Partner_LU_name parameter.

Source: APPC/MVS

Detecting Module:
ATBLUMB

System Action: The system returns a parameter_error
(decimal 19) return code to the caller of the Allocate
service.

Application Programmer Response: Verify that the
name specified on the Partner_LU_name parameter is
correct. If the name is correct, contact the operator to
determine why the status of the LU is not “active” or
“outbound only”.

Operator Response: At the request of the application
programmer, enter a DISPLAY APPC,LU command to
determine the status of the partner LU. If the status of
the partner LU is not “active” or “outbound only”, enter a
SET APPC=xx command to activate the LU.

11-36 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

ATB80066I The Local LU unregistered as a
resource manager causing the
conversation to terminate.

Explanation: A TP called a conversation service for a
conversation with a synchronization level of syncpt, but
the request could not be processed because the local
LU became unregistered as a resource manager, which
resulted in the conversation being terminated
abnormally. The local LU may have unregistered as a
resource manager for one of the following reasons:

v An LUDEL was issued to quiesce work for the local
LU and delete the LU from the APPC configuration.

v The transaction scheduler for the local lu unidentified
itself from APPC/MVS.

v The syncpoint manager (RRS) became unavailable.

v A VTAM VARY command was issued to stop work for
the local LU immediately.

v VTAM became unavailable.

v An internal APPC error caused the local LU to
become unregistered as a resource manager.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSCA, ATBVSRB

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller. No further conversation services will be
successful for the conversation.

Application Programmer Response: Contact the
operator to determine why the local LU may have
unregistered as a resource manager and have the
Operator verify that the Local LU is currently registered
as a resource manager before attempting to the allocate
another syncpt conversation.

Operator Response: At the request of the application
programmer:

v Enter a DISPLAY APPC,LU command to display the
LUs that are currently defined to the APPC/MVS
configuration. Verify that the Local LU is defined to
the APPC/MVS configuration, is registered as a
resource manager and is capable of processing
conversations with a synchronization level of syncpt.

v Verify that RRS is available.

v Verify that VTAM is available and the local LU is
active in the VTAM configuration.

Security Administrator Response: If the operator
determines that VTAM and RRS are available and the
local LU is defined and active in the APPC/MVS
configuration, but the local LU is still not capable of
processing conversations with a synchronization level of
syncpt, search the problem reporting data bases for a
fix for the problem. If no fix exists, contact the IBM
Support Center. Provide the logrec data set error
records and any SVC dumps taken by APPC/MVS.

ATB80067I The Local LU unregistered as a
resource manager causing the allocate
request to fail.

Explanation: A TP called the LU 6.2 Allocate service
or the CPI-C Allocate service to allocate a conversation
with a synchronization level of syncpt, but the request
could not be processed because the local LU became
unregistered as a resource manager, which resulted in
the allocate request failing. The local LU may have
unregistered as a resource manager for one of the
following reasons:

v An LUDEL was issued to quiesce work for the local
LU and delete the LU from the APPC configuration.

v The transaction scheduler for the local lu unidentified
itself from APPC/MVS.

v The syncpoint manager (RRS) became unavailable.

v A VTAM VARY command was issued to stop work for
the local LU immediately.

v VTAM became unavailable.

v An internal APPC error caused the local LU to
become unregistered as a resource manager.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSCA, ATBVSRB

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller. No further conversation services will be
successful for the conversation.

Application Programmer Response: Contact the
operator to determine why the local LU may have
unregistered as a resource manager and have the
Operator verify that the Local LU is currently registered
as a resource manager before attempting to the allocate
another syncpt conversation.

Operator Response: At the request of the application
programmer:

v Enter a DISPLAY APPC,LU command to display the
LUs that are currently defined to the APPC/MVS
configuration. Verify that the Local LU is defined to
the APPC/MVS configuration, is registered as a
resource manager and is capable of processing
conversations with a synchronization level of syncpt.

v Verify that RRS is available.

v Verify that VTAM is available and the local LU is
active in the VTAM configuration.

Security Administrator Response: If the operator
determines that VTAM and RRS are available and the
local LU is defined and active in the APPC/MVS
configuration, but the local LU is still not capable of
processing conversations with a synchronization level of
syncpt, search the problem reporting data bases for a
fix for the problem. If no fix exists, contact the IBM
Support Center. Provide the logrec data set error

Chapter 11. Error_Extract Reason Codes and Messages 11-37

records and any SVC dumps taken by APPC/MVS.

ATB80068I Value specified on Notify_type
parameter is not valid.

Explanation: A TP called an APPC/MVS conversation
service. The value specified on the Notify_type
parameter is not valid.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSCF, ATBVSCD, ATBVSDE,
ATBVSPT, ATBVSRT, ATBVSSR, ATBVSFL,
ATBVSRC, ATBVSSD

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the specified service.

Application Programmer Response: See the
description of the conversation service in “Chapter 8.
APPC/MVS TP Conversation Callable Services” on
page 8-1 for explanations of valid Notify_type values.
Specify a valid Notify_type value on the call to the
service.

ATB80069I Confirm processing not allowed when
Sync_level is None.

Explanation: A TP called an APPC/MVS conversation
service to send a confirmation request to a partner
program on a conversation that was allocated with a
Sync_level of None. A TP cannot send a confirmation
request when a Sync_level of None is specified.

Source: APPC/MVS

Detecting Module:
ATBVSCF, ATBVSSD, ATBVSDE, ATBVSPT

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller.

Application Programmer Response: Do one of the
following:

v If the TP called LU 6.2 Allocate, ensure that the call
to Allocate specifies a Sync_level of Confirm

v If the TP uses the CPI-C Initialize_Conversation and
Allocate calls, specify a Sync_level of Confirm using
the Set_Sync_Level (CMSSL) service

v Change the TP so it does not request confirm
processing for the conversation.

ATB80070I Value specified on Deallocate_type
parameter is not valid.

Explanation: A TP called the Deallocate or
Set_Deallocate_Type service to deallocate a
conversation. The value specified on the

Deallocate_type parameter is not valid.

Source: APPC/MVS

Detecting Module:
ATBVSDE, ATBVSST

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller.

Application Programmer Response: Do one of the
following:

v If the TP called LU 6.2 Deallocate, see the
description of the Deallocate service in “Chapter 8.
APPC/MVS TP Conversation Callable Services” on
page 8-1 for explanations of the valid Deallocate_type
values. Enter a valid Deallocate_type on the call to
the Deallocate service.

v If the TP called the CPI-C Set_Deallocate_Type
service, see the description of the CPI-C
Set_Deallocate_Type service in the CPI-C Reference
for explanations of valid values for the
deallocate_type parameter. Specify a valid value on
the deallocate_type parameter.

ATB80071I Scheduler extract exit is not specified.

Explanation: A TP called one of the following
services:

v LU 6.2 Allocate

v CPI-C Initialize_Conversation

v LU 6.2 Get_Conversation

v CPI-C Accept_Conversation.

The TP was running in an address space that had more
than one active TP. APPC/MVS could not associate the
request with a TP because the transaction scheduler for
the address space did not specify an extract exit.

Source: APPC/MVS

Detecting Module:
ATBVSAL, ATBVSGC, ATBVSIN

System Action: If the TP called the LU 6.2 Allocate or
CPI-C Initialize_Conversation service, the system
returns a product_specific_error (decimal 20) return
code to the caller. If the TP called the LU 6.2
Get_Conversation or CPI-C Accept_Conversation
service, the system returns a program_state_check
(decimal 25) return code to the caller.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the
owner of the scheduler product. Ask the owner of the
scheduler to ensure that the scheduler product specifies
an extract exit. See z/OS MVS System Messages, Vol 3

11-38 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

(ASB-BPX) for information about how to establish an
extract exit.

ATB80073I TP cannot call the service_name
service while in current_state state.

Explanation: A TP called an APPC/MVS conversation
service. The call is not allowed in the conversation state
for the conversation specified on the service call.

In the message text:

service_name The name of the APPC/MVS TP
conversation service that the TP tried
to call.

current_state The conversation state that the TP
was in when it tried to call the service
specified in the message text. One of
the following values can appear in this
field:
v Initialize
v Send
v Receive
v Send Pending
v Confirm
v Confirm Send
v Confirm Deallocate

Source: APPC/MVS

Detecting Module:
ATBVSFS

System Action: The system returns a
program_state_check (decimal 25) return code to the
caller of the conversation service.

Application Programmer Response: See the
APPC/MVS conversation state table in “Appendix C.
APPC/MVS Conversation State Table” on page C-1 for
information about when you can call the APPC/MVS
service specified in the message text. Change the TP
so it calls the service while the conversation is in a valid
state for that service.

ATB80074I Call to previous service did not finish
sending logical record. TP must
specify more data to send.

Explanation: A TP tried to call an APPC/MVS
conversation service. The conversation was in “send”
state when the TP tried to call the service. A call to a
previous conversation service did not send a complete
logical record. For a basic conversation in “send” state,
the TP cannot change the state of the conversation until
a previous conversation service sends a complete
logical record. Also, the TP cannot call the Confirm
service until the complete logical record is sent.

Source: APPC/MVS

Detecting Module:
ATBVSCF, ATBVSPT, ATBVSDE, ATBVSRC,
ATBMSLL

System Action: The system returns a
program_state_check (decimal 25) return code to the
caller of the conversation service.

Application Programmer Response: Change the TP
so it does not call another service before APPC/MVS
finishes sending a complete logical record.

ATB80075I Partner ended session for LU=LOCAL
conversation.

Explanation: A TP tried to call an APPC/MVS service
for an LU=LOCAL conversation. One of the following
occurred:

v The partner TP called the Deallocate service to
deallocate the conversation abnormally

v The partner TP was cancelled while the system was
processing the conversation service.

Source: APPC/MVS

Detecting Module:
ATBAMLS, ATBAMLR

System Action: The system returns a
resource_failure_retry (decimal 27) return code to the
caller of the conversation service.

Application Programmer Response: Determine why
the partner TP ended the conversation (or why the
partner TP was cancelled).

ATB80076I No data immediately available to
receive for Receive_Immediate service.

Explanation: A TP called the LU 6.2
Receive_Immediate or CPI-C Receive conversation
service to receive information that is available to a
conversation. No data was available to receive.

Source: APPC/MVS

Detecting Module:
ATBAMRC, ATBAMLR

System Action: The system returns an unsuccessful
(decimal 28) return code to the caller of the
Receive_Immediate or CPI-C Receive service.

Application Programmer Response: Change the TP
so it calls the Receive_and_Wait or Post_on_Receipt
service before it calls the Receive_Immediate service.
See the descriptions of these services in “Chapter 8.
APPC/MVS TP Conversation Callable Services” on
page 8-1 for more information.

Chapter 11. Error_Extract Reason Codes and Messages 11-39

ATB80077I Value specified on Error_Direction
parameter is not valid.

Explanation: A TP called the LU 6.2 Send_Error or
CPI-C Set_Error_Direction service to inform a partner
program that the TP encountered an error. The value
specified on the Error_Direction parameter is not valid.

Source: APPC/MVS

Detecting Module:
ATBVSSR, ATBVSST

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the conversation service.

Application Programmer Response: See the
description of the Send_Error service in “Chapter 8.
APPC/MVS TP Conversation Callable Services” on
page 8-1 for explanations of valid Error_Direction
values. Specify a valid Error_Direction value on the call.

ATB80078I No inbound conversations available,
no active TPs in the address space.

Explanation: A TP called the Accept_Conversation or
Get_Conversation service to obtain the conversation ID
for an inbound conversation. No inbound conversation
exists because there is no active TP in the address
space.

Source: APPC/MVS

Detecting Module:
ATBVSGC

System Action: The system returns a
program_state_check (decimal 25) return code to the
caller of the Accept_Conversation or Get_Conversation
service.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: From the
transaction scheduler in use, call the Associate service
to associate the TP with the address space in which it is
running.

ATB80079I No inbound conversation available for
the TP to receive.

Explanation: A TP called the Accept_Conversation or
Get_Conversation service to obtain the conversation ID
for an inbound conversation. No inbound conversation
exists to be received.

Source: APPC/MVS

Detecting Module:
ATBVSGC

System Action: The system returns a
program_state_check (decimal 25) return code to the
caller of the Accept_Conversation or Get_Conversation
service.

Application Programmer Response: Determine if the
conversation was deallocated before the TP called the
Accept_Conversation or Get_Conversation service. If
so, change the TP so it does not call the service after
the conversation is deallocated. If not, ensure that the
conversation is allocated before trying to accept it or
return its conversation ID.

ATB80082I A TP called Accept_Conversation or
Get_Conversation out of sequence.

Explanation: A TP called the Accept_Conversation or
Get_Conversation service to return the conversation ID
that the TP will use to reference the conversation on
which it was allocated. APPC/MVS could not process
the request because the TP called another APPC/MVS
service previously (after the conversation was
allocated).

Source: APPC/MVS

Detecting Module:
ATBVSGC

System Action: The system returns a
program_state_check (decimal 25) return code to the
caller of the Accept_Conversation or Get_Conversation
service.

Application Programmer Response: Change the TP
so it calls the Accept_Conversation or Get_Conversation
service before it calls any other APPC/MVS service
(after the conversation is allocated).

ATB80083I Side information data set not defined.

Explanation: A TP called the Allocate service to
allocate a conversation with another program. The
request specified a symbolic destination name on the
Sym_dest_name parameter, but the side information
data set was not defined to APPC/MVS.

Source: APPC/MVS

Detecting Module:
ATBSD1G

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Allocate service.

Application Programmer Response: Contact the
operator to determine if a side information data set is
defined to APPC/MVS.

Operator Response: At the request of the application
programmer, enter a DISPLAY APPC,LU command to
determine if a side information data set is defined to

11-40 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

APPC/MVS. If not, ask the system programmer to
define the data set.

At the request of the system programmer, enter a SET
APPC=xx command to add the side information data set
specified in the APPCPMxx parmlib member.

Security Administrator Response: At the request of
the operator, add a SIDEINFO statement that defines
the side information data set to an APPCPMxx parmlib
member. Then ask the operator to enter a SET
APPC=xx command to add the side information data set
specified in the APPCPMxx parmlib member.

ATB80084I From VTAM macro APPCCMD: General
Return Code: genrc, Recovery Action
Return Code: recrc

Explanation: A TP called an APPC/MVS conversation
service that resulted in an invocation of the VTAM
APPCCMD macro. The APPCCMD macro returned a
non-zero return code, indicating that an error occurred.

In the message text:

genrc The general return code from the
VTAM macro APPCCMD.

recrc The recovery action return code from
the VTAM macro APPCCMD.

Source: APPC/MVS

Detecting Module:
ATBAMAL, ATBAMCD, ATBAMCF, ATBAMDE,
ATBAMFL, ATBAMPT, ATBAMRE, ATBAMRT,
ATBAMSD, ATBAMSR, ATBAMTS, ATBLUVS

System Action: The system returns a non-zero return
code to the caller of the conversation service.

Application Programmer Response: See z/OS
Communications Server: SNA Programming for
explanations of the general return code and recovery
action return code combination. The receipt of an
unexpected general return code and recovery action
return code from a VTAM APPCCMD usually means
there is an internal APPC or VTAM error.

Security Administrator Response: Search the
system log and logrec data set for any messages
indicating an error related to an APPC/MVS LU. Search
the problem reporting data bases for a fix for the
problem. If no fix exists, contact the IBM Support Center
with any diagnostic information that has been gathered.

ATB80085I Conversation_type of
CM_mapped_conversation is not valid
when Fill characteristic is
CM_fill_buffer.

Explanation: A TP called the CPI-C
Set_Conversation_Type service to set the conversation
type characteristic for a conversation. The

Conversation_type parameter specified a mapped
conversation. Previously, the TP specified a value of
CM_FILL_BUFFER on a call to the CPI-C Set_Fill
service, which indicates that the TP is to receive data
independent of its logical format. The
Set_Conversation_Type service cannot specify a
mapped conversation when a fill type of
CM_FILL_BUFFER is specified.

Source: APPC/MVS

Detecting Module:
ATBVSST

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Set_Conversation_Type service.

Application Programmer Response: Do one of the
following:

v Set the conversation type to basic

v Call the Set_Fill service to specify a Fill of Fill_LL
before calling Set_Conversation_Type to specify a
Conversation_Type of mapped_conversation.

ATB80086I Conversation_type of
CM_mapped_conversation is not valid
when log_data characteristic is
specified.

Explanation: A TP called the CPI-C
Set_Conversation_Type service to set the conversation
type characteristic for a conversation. The
Conversation_type parameter specified
CM_MAPPED_CONVERSATION. Previously, the TP
called the CPI-C Set_Log_Data service to set log data
characteristics for the conversation. Because log data
cannot be sent for a mapped conversation, APPC/MVS
cannot process the request.

Source: APPC/MVS

Detecting Module:
ATBVSST

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Set_Conversation_Type service.

Application Programmer Response: Do one of the
following:

v Set the conversation type to basic (specify a value of
CM_BASIC_CONVERSATION on a call to the
Set_Conversation_Type service)

v Remove the call to Set_Log_Data from the TP.

Chapter 11. Error_Extract Reason Codes and Messages 11-41

ATB80087I Fill of CM_fill_buffer is not valid when
conversation_type characteristic is
CM_mapped_conversation.

Explanation: A TP called the CPI-C Set_Fill
conversation service to set the fill characteristic for a
conversation. The fill parameter specified that the TP is
to receive data independent of its logical record format
(a value of CM_FILL_BUFFER). Previously, the TP
called the CPI-C Set_Conversation_Type service to set
a mapped conversation type for the conversation (a
value of CM_MAPPED_CONVERSATION). A TP cannot
specify an independent logical format for a mapped
conversation.

Source: APPC/MVS

Detecting Module:
ATBVSST

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Set_Fill service.

Application Programmer Response: Do one of the
following:

v Set the conversation type to basic (specify a value of
CM_BASIC_CONVERSATION on the call to the
Set_Conversation_Type service)

v Remove the call to Set_Fill from the TP.

ATB80088I Value specified on
Prepare_to_receive_type parameter is
not valid.

Explanation: A TP called the LU 6.2
Prepare_to_Receive or the CPI-C
Set_Prepare_To_Receive_Type service to change a
conversation from send to receive state. The value
specified on the Prepare_to_receive_type parameter
was not valid.

Source: APPC/MVS

Detecting Module:
ATBVSPT, ATBVSSV

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller.

Application Programmer Response: Do one of the
following:

v If the TP called the LU 6.2 Prepare_to_Receive
service, see the description of the
Prepare_to_Receive service in “Chapter 8.
APPC/MVS TP Conversation Callable Services” on
page 8-1 for explanations of valid
Prepare_to_receive_type values. Specify a valid
value on the Prepare_to_receive_type parameter.

v If the TP called the CPI-C
Set_Prepare_to_Receive_Type service, see the
description of the CPI-C
Set_Prepare_To_Receive_Type service in the CPI-C
Reference for explanations of valid values for the
prepare_to_receive_type parameter. Specify a valid
value on the prepare_to_receive_type parameter.

ATB80089I Value specified on log_data_length
parameter is not valid.

Explanation: A TP called the CPI-C Set_Log_Data
service to set the log data characteristic for a
conversation. The log_data_length parameter specified
a value that is not valid.

Source: APPC/MVS

Detecting Module:
ATBVSST

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the CPI-C Set_Log_Data service.

Application Programmer Response: See the
description of the CPI-C Set_Log_Data service in the
CPI-C Reference for explanations of valid values for the
log_data_length parameter. Specify a valid value on the
log_data_length parameter.

ATB80090I Set_Log_Data service not valid for a
mapped conversation.

Explanation: A TP called the CPI-C Set_Log_Data
service to set the log data characteristic for a
conversation. The conversation is mapped. A TP cannot
issue the Set_Log_Data service for a mapped
conversation.

Source: APPC/MVS

Detecting Module:
ATBVSST

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Set_Log_Data service.

Application Programmer Response: Change the TP
so it does not call the Set_Log_Data service for a
mapped conversation.

ATB80091I Value specified on Mode_name_length
parameter is not valid.

Explanation: A TP called the CPI-C Set_Mode_Name
service to set the mode for a conversation. The value
specified on the mode_name_length parameter is not
valid.

Source: APPC/MVS

11-42 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Detecting Module:
ATBVSSV

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Set_Mode_Name service.

Application Programmer Response: See the
description of the CPI-C Set_Mode_Name service in the
CPI-C Reference for explanations of valid values for the
Mode_name_length parameter. Specify a valid value on
the Mode_name_length parameter.

ATB80092I Value specified on
partner_lu_name_length parameter is
not valid.

Explanation: A TP called the CPI-C
Set_Partner_LU_name service to set the
partner_LU_name characteristic for a conversation. The
value specified on the partner_lu_name_length
parameter is not valid.

Source: APPC/MVS

Detecting Module:
ATBVSSV

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Set_Partner_LU_Name service.

Application Programmer Response: See the
description of the CPI-C Set_Partner_LU_Name service
in the CPI-C Reference for explanations of valid values
for the partner_LU_name_length parameter. Specify a
valid value on the partner_LU_name_length parameter.

ATB80093I Deallocate_type of
CM_deallocate_confirm is not valid
when sync_level characteristic is
CM_none.

Explanation: A TP called the CPI-C
Set_Deallocate_Type service to set the deallocate type
characteristic for a conversation. The deallocate_type
parameter specified a value of CM_Deallocate_Confirm,
which is not compatible with the established
conversation sync_level of CM_none.

Source: APPC/MVS

Detecting Module:
ATBVSST

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Set_Deallocate_Type service.

Application Programmer Response: Do one of the
following:

v See the description of the CPI-C
Set_Deallocate_Type service in the CPI-C Reference
for explanations of valid values for the
Deallocate_type parameter. Specify a value other
than CM_Deallocate_Confirm on the deallocate_type
parameter.

v See the description of the CPI-C Set_Sync_Level
service in the CPI-C Reference for explanations of
valid values for the sync_level parameter. Specify a
value other than CM_none on the sync_level
parameter.

ATB80094I Prepare_to_receive_type of
CM_prep_to_receive_confirm is not
valid when sync_level characteristic is
CM_none.

Explanation: A TP called the CPI-C Set_Prepare_To
Receive_Type service to set the prepare to receive type
characteristic for a conversation. The
prepare_to_receive_type parameter specified a value of
CM_Prep_to_Receive_Confirm, which is not compatible
with the established conversation sync_level of
CM_none.

Source: APPC/MVS

Detecting Module:
ATBVSSV

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Set_Prepare_To_Receive_Type service.

Application Programmer Response: Do one of the
following:

v See the description of the CPI-C
Set_Prepare_To_Receive_Type service in the CPI-C
Reference for explanations of valid values for the
prepare_to_receive_type parameter. Specify a value
other than CM_Prep_to_Receive_Confirm on the
prepare_to_receive_type parameter.

v See the description of the CPI-C Set_Sync_Level
service in the CPI-C Reference for explanations of
valid values for the sync_level parameter. Specify a
value other than CM_none on the sync_level
parameter.

ATB80095I Value specified on Receive_type
parameter is not valid.

Explanation: A TP called the CPI-C
Set_Receive_Type service to set the receive_type
characteristic for a conversation. The receive_type
parameter specified a value that is not valid.

Source: APPC/MVS

Detecting Module:
ATBVSSV

Chapter 11. Error_Extract Reason Codes and Messages 11-43

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Set_Receive_Type service.

Application Programmer Response: See the
description of the CPI-C Set_Receive_Type service in
the CPI-C Reference for explanations of valid values for
the receive_type parameter. Specify a valid value on the
receive_type parameter.

ATB80096I Deallocate_type of deallocate_confirm
or deallocate_flush is not valid when
sync_level characteristic is Syncpoint.

Explanation: A TP called the LU 6.2 Deallocate
service to deallocate a conversation with a
synchronization level of syncpoint. The specified
deallocate_type is not valid for deallocating a syncpt
conversation. The valid deallocate types that can be
specified for a syncpt conversation are
deallocate_sync_level or deallocate_abend.

Source: APPC/MVS

Detecting Module:
ATBVSDE

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the LU 6.2 Deallocate service.

Application Programmer Response: Specify a
deallocate_type of deallocate_sync_level or
deallocate_abend to deallocate the syncpoint
conversation.

ATB80097I Value specified on send_type
parameter is not valid.

Explanation: A TP called the LU 6.2 Send_Data or
CPI-C Set_Send_Type service to set the Send_type
characteristic for a conversation. The Send_type
parameter specified a value that is not valid.

Source: APPC/MVS

Detecting Module:
ATBVSSV, ATBVSSD

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller.

Application Programmer Response: Do one of the
following:

v If the TP called the LU 6.2 Send_Data service, see
the description of the Send_Data service in
“Chapter 8. APPC/MVS TP Conversation Callable
Services” on page 8-1 for an explanation of the
Send_type parameter. Specify a valid value on the
Send_type parameter.

v If the TP called the CPI-C Set_Send_Type service,
see the description of the CPI-C Set_Send_Type
service in the CPI-C Reference for explanations of
valid values for the Send_type parameter. Specify a
valid value on the Send_type parameter.

ATB80098I Send_type of CM_send_and_confirm is
not valid when sync_level
characteristic is CM_none.

Explanation: A TP called the CPI-C Set_Send_Type
service to set the Send_type characteristic for a
conversation. The send_type parameter specified a
value of CM_Send_and_Confirm, which is not
compatible with the established conversation sync_level
of CM_none. A conversation must be able to perform
confirmation processing to accept the
CM_Send_and_Confirm.

Source: APPC/MVS

Detecting Module:
ATBVSSV

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Set_Send_Type service.

Application Programmer Response: Do one of the
following:

v If you want to send a request for confirmation, specify
a sync_level of CM_CONFIRM on a call to the
Set_Sync_Level service. Then call the
Set_Send_Type service again.

v If you do not want to send a request for confirmation,
see the description of the CPI-C Set_Send_Type
service in the CPI-C Reference for explanations of
other of valid values for the send_type parameter.

ATB80099I The APPCCMD command detected that
the ACB is no longer active for the
local LU.

Explanation: A TP called an APPC/MVS conversation
service that resulted in an invocation of the VTAM
APPCCMD macro. The APPCCMD macro returned a
non-zero return code, indicating that an error occurred
because the ACB for the local LU is closed.

Source: APPC/MVS

Detecting Module:
ATBAMAL, ATBAMCD, ATBAMCF, ATBAMDE,
ATBAMFL, ATBAMPT, ATBAMRE, ATBAMRT,
ATBAMSD, ATBAMSR, ATBAMTS, ATBLUVS

System Action: The system records the return codes
from APPCCMD in a logrec record, and returns a
non-zero return code to the caller of the conversation
service.

11-44 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Application Programmer Response: See z/OS
Communications Server: SNA Programmer’s LU 6.2
Guide for explanations of the return code from the
APPCCMD macro. Check the
Error_Log_Information_Length parameter on
Error_Extract to see if the partner system returned log
data. If log data is available, see the description of the
Error_Extract service “Error_Extract” on page 8-34 for
information about how to use the log data to diagnose
the error.

ATB80100I From VTAM macro APPCCMD: Primary
error return code: prim_code,
secondary error return code: sec_code,
sense code: sense_code.

Explanation: A TP called an APPC/MVS conversation
service that resulted in an invocation of the VTAM
APPCCMD macro. The APPCCMD macro returned a
non-zero return code, indicating that an error occurred.

In the message text:

prim_code The primary return code from the
VTAM macro APPCCMD.

sec_code The secondary return code from the
VTAM macro APPCCMD.

sense_code The sense code from the VTAM
macro APPCCMD.

Source: APPC/MVS

Detecting Module:
ATBAMAL, ATBAMCD, ATBAMCF, ATBAMDE,
ATBAMFL, ATBAMPT, ATBAMRE, ATBAMRT,
ATBAMSD, ATBAMSR, ATBAMTS, ATBLUVS

System Action: The system returns a non-zero return
code to the caller of the conversation service. The
partner LU might return log data, which further
describes the error.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Determine why
the ACB is closed. It could be because VTAM is not
active, the scheduler unidentified with the IMMEDIATE
option or the LU was inactivated with a VTAM
command. If so, activate the LU so that the ACB opens
and the LU transitions to Active state.

See z/OS Communications Server: SNA Programmer’s
LU 6.2 Guide for explanations of the primary return
code, secondary return code and the sense code
displayed in the message text. Check the
Error_Log_Information_Length parameter on
Error_Extract to see if the partner system returned log
data. If log data is available, see the description of the
Error_Extract service “Error_Extract” on page 8-34 for
information about how to use the log data to diagnose
the error.

ATB80101I LU=LOCAL conversation received
sense code sense_code from partner
TP.

Explanation: A TP running on MVS called an
APPC/MVS service for an LU=LOCAL conversation.
The partner TP found an error and provided the sense
code specified in the message text.

In the message text:

sense_code The sense code provided by the
partner TP.

Source: APPC/MVS

Detecting Module:
ATBAMLR, ATBAMLS

System Action: The system returns a non-zero return
code to the caller of the conversation service. The
partner TP might return log data, which further
describes the error.

Application Programmer Response: See z/OS
Communications Server: SNA Programmer’s LU 6.2
Guide for an explanation of the sense code displayed in
the message text. Check the
Error_Log_Information_Length parameter on
Error_Extract to see if the partner system returned log
data.

ATB80102I Sync_level of CM_none is not valid
when send_type,
prepare_to_receive_type or
deallocate_type characteristic indicates
confirm processing.

Explanation: A TP called the CPI-C Set_Sync_Level
service to set the synchronization level characteristic for
a conversation. The value specified on the sync_level
parameter is 0 (CM_none). A previous call to the
Set_Send_Type, Set_Prepare_to_Receive_Type, or
Set_Deallocate_Type service requested confirmation
processing. A sync_level value of CM_none is not valid
when confirmation processing is requested.

Source: APPC/MVS

Detecting Module:
ATBVSSV

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Set_Sync_Level service.

Application Programmer Response: Do one of the
following:

v See the description of the CPI-C Set_Sync_Level
service in the CPI-C Reference for explanations of
valid values for the sync_level parameter. Specify a
value other than CM_none (0) on the sync_level
parameter.

Chapter 11. Error_Extract Reason Codes and Messages 11-45

v See the description of the CPI-C Set_Send_Type,
Set_Prepare_to_Receive_Type, or
Set_Deallocate_Type service in the CPI-C Reference
for explanations of valid values for the parameter that
specifies confirmation processing. Specify a value
that does not request confirmation processing on that
parameter.

ATB80103I Sync_level of CM_syncpt is not valid
when deallocate_type characteristic is
either deallocate_flush or
deallocate_confirm.

Explanation: A TP called either:

v The CPI-C Set_Sync_Level service to set the
synchronization level characteristic for a conversation
to sync_level_syncpt, or

v The CPI-C Set_Deallocate_Type service to set the
deallocate type characteristic for a conversation to
either deallocate_flush or deallocate_confirm, after a
previous call to the Set_Sync_Level service set the
synchronization level characteristic for a conversation
to sync_level_syncpt.

Source: APPC/MVS

Detecting Module:
ATBVSST, ATBVSSV

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Set_Sync_Level or
Set_Deallocate_Type service.

Application Programmer Response: Do one of the
following:

v See the description of the Set_Sync_Level service in
CPI-C Reference for explanations of valid values for
the sync_level parameter when the Deallocate_Type
characteristic for the conversation is set to either
deallocate_flush or deallocate_confirm.

v See the description of the Set_Deallocate_Type
service in CPI-C Reference for explanations of valid
values for the deallocate_type parameter when the
synchronization level characteristic of the
conversation is set to CM_Syncpt. The only valid
value for deallocate_type is
cm_deallocate_sync_level when the synchronization
level characteristic of the conversation is set to
CM_Syncpt.

ATB80104I Value specified on Locks parameter is
not valid.

Explanation: A TP called the Prepare_to_Receive
service to change a conversation from send to receive
state. The value specified on the Locks parameter is not
valid.

Source: APPC/MVS

Detecting Module:
ATBVSPT

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Prepare_to_Receive service.

Application Programmer Response: See the
description of the Prepare_to_Receive service for an
explanation of the Locks parameter. Specify a valid
value on the Locks parameter.

ATB80105I Value specified on Fill parameter is not
valid.

Explanation: A TP called the LU 6.2
Receive_Immediate, LU 6.2 Receive_and_Wait, or
CPI-C Set_Fill service. The value specified on the Fill
parameter is not valid.

Source: APPC/MVS

Detecting Module:
ATBVSRC, ATBVSST

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the specified conversation service.

Application Programmer Response: See the
description of the APPC/MVS conversation service in
this book (if the TP called an LU 6.2 service) or the
CPI-C Reference (if the TP called a CPI-C service) for
explanations of valid values for the Fill parameter.
Specify a valid value on the Fill parameter.

ATB80106I Value specified on Access_token
parameter is not valid.

Explanation: A TP called the Send_Data,
Receive_and_Wait, or Receive_Immediate conversation
service. The Access_token parameter specified a value
that is not valid.

Source: APPC/MVS

Detecting Module:
ATBVSRC, ATBVSSD

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the specified conversation service.

Application Programmer Response: See the
description of the Send_Data, Receive_and_Wait, or
Receive_Immediate service in “Chapter 8. APPC/MVS
TP Conversation Callable Services” on page 8-1 for an
explanation of the Access_token parameter. Specify a
valid value on the Access_token parameter.

11-46 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

ATB80107I Value specified on Requested_length
parameter is not valid.

Explanation: A TP called the CPI-C Receive service
to receive information from a conversation. The
Requested_length parameter specified a value that is
not valid.

Source: APPC/MVS

Detecting Module:
ATBVSRC

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the CPI-C Receive service.

Application Programmer Response: See the
description of the CPI-C Receive service in the CPI-C
Reference for an explanation of the Requested_length
parameter. Specify a valid value on the
Requested_length parameter.

ATB80108I Value specified on Receive_length
parameter is not valid.

Explanation: A TP called the LU 6.2
Receive_Immediate or Receive_and_Wait service to
receive information from a conversation. The
Receive_length parameter specified a value that is not
valid.

Source: APPC/MVS

Detecting Module:
ATBVSRC

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the specified conversation service.

Application Programmer Response: See the
description of the Receive_Immediate or
Receive_and_Wait service in “Chapter 8. APPC/MVS TP
Conversation Callable Services” on page 8-1 for an
explanation of the Receive_length parameter. Specify a
valid value on the Receive_length parameter.

ATB80109I Value specified on Send_length
parameter is not valid.

Explanation: A TP called the Send_Data service to
send data to a partner program. The Send_length
parameter specified a value that is not valid.

Source: APPC/MVS

Detecting Module:
ATBVSSD

System Action: The system returns a
program_parameter_check (decimal 24) return code to

the caller of the Send service.

Application Programmer Response: Do one of the
following:

v If the TP called LU 6.2 Send_Data, see the
description of the Send_Data service in “Chapter 8.
APPC/MVS TP Conversation Callable Services” on
page 8-1 for explanations of the valid Send_length
values. Enter a valid Send_length on the call to the
Send_Data service.

v If the TP called the CPI-C Send_Data service, see
the description of the CPI-C Send_Data service in the
CPI-C Reference for explanations of valid values for
the Send_length parameter. Specify a valid value on
the Send_length parameter.

ATB80110I Value specified on Buffer parameter is
not valid for a basic conversation.

Explanation: A TP called the Send_Data service for a
basic conversation. The buffer parameter contains a
logical record for which the logical record length field is
not valid.

Source: APPC/MVS

Detecting Module:
ATBMSLL

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Send service.

Application Programmer Response: See the
description of the Send_Data service in “Chapter 8.
APPC/MVS TP Conversation Callable Services” on
page 8-1 for explanations of valid values for the Buffer
parameter. Specify a valid value on the Buffer
parameter.

ATB80111I Post_On_Receipt service not valid for
a mapped conversation.

Explanation: A TP called the Post_On_Receipt
service to request notification when data or status is
received for a specified conversation. The TP called
Post_On_Receipt for a mapped conversation.
APPC/MVS does not support Post_On_Receipt for
mapped conversations.

Source: APPC/MVS

Detecting Module:
ATBVSPR

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of the Post_On_Receipt service.

Application Programmer Response: Do one of the
following:

Chapter 11. Error_Extract Reason Codes and Messages 11-47

v Allocate the conversation with a basic conversation
type

v Remove the call to Post_On_Receipt from the TP.

ATB80112I Protocol Violation: APPC/MVS received
deallocation status on a conversation
with Sync_Level of Syncpt, but not
during a two-phase commit exchange.

Explanation: APPC/MVS received a deallocation
status on a conversation with synchronization level of
syncpt outside the scope of a two-phase commit
exchange, which is a violation of the Syncpoint
programming architecture.

Source: APPC/MVS

Detecting Module:
ATBAMRE

System Action: The system returns a
resource_failure_no_retry_bo (decimal 133) return code
to the caller of the conversation service. The current
unit of recovery has been put into backout required
state. Local protected resources should be backed out.
APPC/MVS terminates the session with the partner
program that sent the deallocation status.

Application Programmer Response: Correct the
application program to deallocate syncpoint
conversations either normally as part of the two phase
commit exchange or abnormally by deallocating the
syncpoint conversation with a deallocate type of
deallocate_abend_*.

ATB80114I Protocol violation: A conversation with
a Sync_Level of None was established,
but APPC/MVS received confirm
status.

Explanation: A TP tried to call an APPC/MVS
conversation service. The conversation for which the
service was called has a sync_level characteristic of
None, which indicates that the TPs using this
conversation will not perform confirmation processing.
APPC/MVS received a request for confirmation on the
conversation from the Partner TP.

Source: APPC/MVS

Detecting Module:
ATBAMRE

System Action: The system returns a
resource_failure_no_retry (decimal 26) return code to
the caller of the conversation service.

Application Programmer Response: Establish the
conversation with a sync_level of confirm.

ATB80115I Protocol violation: Partner system
specified an incorrect GDS variable
format for error log data.

Explanation: A TP called an APPC/MVS conversation
service. The partner LU previously sent error log data
on this conversation. The general data stream (GDS)
variable that contains the error log data does not
conform to the LU 6.2 architecture.

Source: APPC/MVS

Detecting Module:
ATBAMEL

System Action: The system returns a
resource_failure_no_retry (decimal 26) return code to
the program that tried to receive the log data.

Application Programmer Response: Contact the
system programmer. Provide the name of the partner
system on which the partner program is running.

Security Administrator Response: See the
description of error log variables in z/OS
Communications Server: SNA Programmer’s LU 6.2
Guide for the correct GDS variable format. Contact the
service department for the system on which the partner
TP is running. Ensure that the partner system is passing
a GDS variable that conforms to the APPC/MVS
architecture.

ATB80116I Protocol violation: APPC/MVS failed to
receive expected error log data.

Explanation: A TP called an APPC/MVS conversation
service. The Partner LU indicated that error log data
would be sent for the conversation, but no error log data
is available to receive or APPC/MVS service failed while
receiving the error log data.

Source: APPC/MVS

Detecting Module:
ATBAMEL

System Action: The system returns a
resource_failure_no_retry (decimal 26) return code to
the caller of the conversation service.

Application Programmer Response: Contact the
system programmer. Provide the name of the partner
system on which the partner program is running.

Security Administrator Response: Verify that
APPC/MVS did not abend while receiving the error log
data. Contact the service department for the system on
which the partner TP is running. Ask the service
personnel to change the partner TP so it either sends
log data or does not incorrectly indicate that log data is
to be sent.

11-48 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

ATB80117I Protocol violation: Partner system did
not send complete error log data in
GDS variable.

Explanation: A TP called an APPC/MVS conversation
service. The Partner LU indicated that error log data
would be sent for the conversation, but APPC/MVS did
not receive the complete log data.

Source: APPC/MVS

Detecting Module:
ATBAMEL

System Action: The system returns a
resource_failure_no_retry (decimal 26) return code to
the caller of the conversation service.

Application Programmer Response: Contact the
system programmer. Provide the name of the partner
system on which the partner program is running.

Security Administrator Response: Contact the
service department for the system on which the partner
TP is running. Ask the service personnel to change the
partner TP so it sends complete log data in the GDS
variable.

ATB80119I An OpenEdition MVS exit failed when a
TP tried to allocate a conversation with
the OpenEdition MVS fork TP.

Explanation: A TP tried to allocate a conversation with
the z/OS UNIX System Services fork TP. The z/OS
UNIX System Services allocate conversation exit could
not process the request.

Source: APPC/MVS

Detecting Module:
ATBAMAL

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the Allocate service.

Application Programmer Response: Do not attempt
to allocate the z/OS UNIX System Services fork TP
directly. Use the z/OS UNIX System Services fork
service to allocate the conversation with the z/OS UNIX
System Services fork TP.

ATB80120I The conversation is not owned by the
home address space of the caller of
the service.

Explanation: APPC/MVS considers the scope of a TP
to be the home address space. Access to a
conversation is limited to programs whose home
address space is the same as the home address space
of the TP that:

v Allocated the conversation

v Accepted the conversation

v Received the conversation via the Receive_Allocate
service for APPC/MVS Server applications

Ownership of a TP and its conversations may also be
reassigned to an address space other than the original
owning address space by using the Associate service
for Transaction Schedulers.

Source: APPC/MVS

Detecting Module:
ATBVSRB

System Action: The system returns a
program_parameter_check (decimal 24) return code to
the caller of requested service.

Application Programmer Response: Resubmit the
request from an address space whose home address
space is the same as the current owning home address
space for conversation.

Security Administrator Response:

ATB80121I The local LU does not support the
synchronization level specified.

Explanation: A TP called the LU 6.2 Allocate or CPI-C
Set_Sync_Level service to set the Sync_level
characteristic for a conversation to sync_level_syncpt. A
Sync_level parameter value of sync_level_syncpt is not
supported by the local LU.

Source: APPC/MVS

Detecting Module:
ATBVSSV, ATBVSAL

System Action: For the LU 6.2 Allocate service, the
system returns a program_parameter_check (decimal
24) return code to the caller. For the CPI-C
Set_Sync_Level service, the system returns a
cm_parm_value_not_supported (decimal 49) return
code to the caller.

Application Programmer Response: Determine what
level of synchronization is supported by the local LU.
The defined synchronization level of the local LU is
defined in the VTAM application (APPL) statement in
SYS1.VTAMLST.

Security Administrator Response: At the request of
the application programmer, identify the contents of the
VTAM application (APPL) statement in SYS1.VTAMLST
for the local LU. To support protected conversations
(that is, conversations with a synchronization level of
syncpt), the VTAM APPL statement for the local LU
must contain the keywords and values
SYNCLVL=SYNCPT and ATNLOSS=ALL.

Chapter 11. Error_Extract Reason Codes and Messages 11-49

ATB80122I System cannot process a call. A
Syncpoint or Backout verb is running.

Explanation: A TP called an APPC/MVS TP
conversation service. The system could not process the
request because APPC/MVS data structures for the
conversation are in use; a Commit (that is, Syncpoint)
or Backout request was issued for a unit of recovery
that includes the conversation for which the
conversation service was issued.

Source: APPC/MVS

Detecting Module:
ATBVSRB

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the conversation service.

Application Programmer Response: Your TP can
periodically retry the call to the conversation service; the
call should be successful once the syncpoint operation
completes. If this in-use condition persists, notify the
system programmer.

Security Administrator Response: Using the
DISPLAY APPC,TP and DISPLAY APPC,UR
commands, determine whether the syncpoint operation
is still in progress, and whether resynchronization is
required.

ATB80123I System cannot process a call. The
conversation is in backout required
state.

Explanation: A TP called an APPC/MVS TP
conversation service for a syncpt conversation. The
system could not process the request because a
“backout required” condition exists for the unit of
recovery that the syncpt conversation belongs to.

Source: APPC/MVS

Detecting Module:
ATBVSRB

System Action: The system returns a
program_state_check (decimal 25) return code to the
caller of the conversation service.

Application Programmer Response: When a unit of
recovery that includes an application programs
syncpoint conversation is in backout required state the
application program should issue a Backout call to
backout local resource associated with the current unit
of recovery.

ATB80124I The local LU cannot process syncpt
requests at the present time.

Explanation: A TP called either:

v The Allocate service to allocate a protected
conversation (a conversation with a synchronization
level of syncpt), or

v The CPI-C Set_Sync_Level service to set the
Sync_level characteristic for a conversation to
sync_level_syncpt.

The request failed because the local LU for the TP is
not registered as a resource manager with the system
syncpoint manager (RRS). The local LU is not
registered for one of the following reasons:

v The system syncpoint manager is not active.

v An error that occurred during resource manager
restart processing has prevented the local LU from
registering as a resource manager with the system
syncpoint manager.

Source: APPC/MVS

Detecting Module:
ATBVSSV, ATBVSAL

System Action: The called service returns a
product_specific_error (decimal 20) return code to the
caller. If the Allocate service was called, a conversation
was not allocated. If the CPI-C Set_Sync_Level service
was called, the Sync_level characteristic for the
conversation was not set.

Operator Response: At the request of the application
programmer, determine if the system syncpoint manager
is active, and notify the system programmer.

At the request of the system programmer, take the
necessary action to activate the system syncpoint
manager, if it is not available.

Security Administrator Response: If the system
syncpoint manager is not active, determine why it is not
active and what steps must be taken to activate it.

If RRS is available, have the operator enter a DISPLAY
APPC,LU command to determine the syncpt capability
of the local LU. If the local LU is not capable of
processing protected conversations, search the system
log and logrec data set for any messages indicating an
error that prevented the local LU from registering as a
resource manager.

ATB80125I Log name exchange failed during
syncpt processing.

Explanation: A TP called the LU 6.2 Allocate service
or CPI-C Allocate Service to allocate a conversation
with a synchronization level of sync_level_syncpt. The
request failed because an error occurred during the
exchange log name transaction that is performed as
part of the allocate request to the partner lu.

11-50 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Source: APPC/MVS

Detecting Module:
ATBPCRS

System Action: The called service returns a
product_specific_error (decimal 20) return code to the
caller. Additional diagnostic messages accompany this
message to identify the specific reason for the
exchange log name failure.

Application Programmer Response: See the
explanation for the ATB80xxxI message that
accompanies this message.

ATB80126I Conversation was terminated during
syncpt processing.

Explanation: A TP called a conversation service that
cannot be processed because a conversation failure
occurred during a previous syncpt or backout verb
request. The return code returned on the call represents
the reason for the conversation failure.

Source: APPC/MVS

Detecting Module:
ATBVSRB

System Action: The called service returns a return
code that represents the reason for the conversation
failure. The conversation has terminated and all
resources associated with the conversation have been
cleaned up.

ATB80127I Conversation was terminated because
APPC/MVS received unrecognized PS
header.

Explanation: APPC/MVS received an unrecognized
PS (Presentation Services) Header. A PS Header is
sent by a partner lu as a request for the local
application program to commit local protected resources
by issuing a Syncpt verb.

Source: APPC/MVS

Detecting Module:
ATBAMRE

System Action: The system returns a
resource_failure_no_retry_bo (decimal 133) return code
to the caller of the conversation service. The current
unit of recovery has been put into backout required
state. Local protected resources should be backed out.
APPC/MVS terminates the session and conversation
with the partner lu that sent the invalid PS Header.

ATB80128I APPC/MVS detected a protocol
violation during an Exchange Log
Name processing.

Explanation: During exchange-log-name processing,
an LU detected an error in the data sent by its partner
LU. Message ATB80125I accompanies this message,
and ATB206E is also issued to provide additional
diagnostic information.

Source: APPC/MVS

Detecting Module:
ATBPCRS

System Action: The protected conversation allocate
request was unsuccessful. Until the protocol violation
being made by the partner LU is corrected, no protected
conversations between the local and partner LU can be
allocated.

Additional diagnostic information is written to the logrec
data set to assist in diagnosing the problem.

The LU that made the protocol violation receives
message ATB70051I as log data.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: Contact the
designated support group for your installation.

ATB80129I APPC/MVS detected a warm/cold log
status mismatch during an Exchange
Log Name processing.

Explanation: While APPC/MVS was processing an
Allocate call, exchange-log-name processing was
required. During the exchange processing, an LU
detected a warm/cold mismatch. Message ATB80125I
accompanies this message, and ATB210E is also
issued to provide additional diagnostic information.

Source: APPC/MVS

Detecting Module:
ATBPCRS

System Action: The protected conversation allocate
request was unsuccessful. Until the mismatch is
resolved, no protected conversations between the local
and partner LU can be allocated.

Additional diagnostic information is written to the logrec
data set to assist in diagnosing the problem.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: To resolve the
warm/cold mismatch, see z/OS MVS Planning:
APPC/MVS Management.

Chapter 11. Error_Extract Reason Codes and Messages 11-51

ATB80130I APPC/MVS detected a log name
mismatch during an Exchange Log
Name processing.

Explanation: While APPC/MVS was processing an
Allocate call, exchange-log-name processing was
required. During the exchange processing, an LU
detected a log-name mismatch. Message ATB80125I
accompanies this message, and ATB211E is also issued
to provide additional diagnostic information.

Source: APPC/MVS

Detecting Module:
ATBPCRS

System Action: The protected conversation allocate
request was unsuccessful. Until the mismatch is
resolved, no protected conversations between the local
and partner LU can be allocated.

Additional diagnostic information is written to the logrec
data set to assist in diagnosing the problem.

Application Programmer Response: Contact the
system programmer.

Security Administrator Response: To resolve the log
name mismatch, see z/OS MVS Planning: APPC/MVS
Management.

ATB80131I Conversation was terminated due to a
break-tree situation.

Explanation: A TP called a conversation service that
cannot be processed because a conversation failure or
conversation deallocation occurred in the allocation tree
during a previous syncpt or backout verb. The break in
the allocation tree resulted in the local conversation
being deallocated as part of logical unit of work identifier
(LUWID) management.

Source: APPC/MVS

Detecting Module:
ATBPCCE

System Action: The called service returns a return
code of deallocated_abend_svc (decimal 30). The
conversation has been deallocated and all resources
associated with the conversation have been cleaned up.

ATB80133I APPC data structures for the TP are in
use because a Syncpoint or Backout
verb is still running.

Explanation: A TP called an APPC/MVS TP
conversation service. The system could not process the
request because APPC/MVS data structures for the
conversation are in use; a Commit (that is, Syncpoint)
or Backout request was issued for a unit of recovery
that includes the conversation for which the

conversation service was issued.

Source: APPC/MVS

Detecting Module:
ATBVSRB

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the conversation service.

Application Programmer Response: Your TP can
periodically retry the call to the conversation service; the
call should be successful once the syncpoint operation
completes. If this in-use condition persists, notify the
system programmer.

Security Administrator Response: Using the
DISPLAY APPC,TP and DISPLAY APPC,UR
commands, determine whether the syncpoint operation
is still in progress, and whether resynchronization is
required.

ATB80134I APPC/MVS detected a protocol
violation during a syncpoint
processing.

Explanation: A TP called a conversation service that
cannot be processed because the conversation was
deallocated during a previous Commit or Backout call.
During the previous syncpoint operation, the partner LU
made a protocol violation, which was reported through
message ATB220I.

Detecting Module:
ATBPCPR, ATBPCBO, ATBPCDS, ATBPCCM,
ATBPCEU, ATBPCCE, ATBPCEF

System Action: The called service returns a return
code of deallocated_abend_svc (decimal 30). The
conversation has been deallocated and all resources
associated with the conversation have been cleaned up.

ATB80135I APPC/MVS detected a protocol
violation during Resynchronization
Processing.

Explanation: During resynchronization processing, an
LU detected an error in the data sent by its partner LU.
Message ATB206E or ATB218E is also issued on the
detecting system when this error occurs, and identifies
the local and partner LUs.

Source: APPC/MVS

Detecting Module:
ATBPCRS

System Action: APPC/MVS resynchronization
processing for the logical unit of work identified in
message ATB214I is suspended.

11-52 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Additional diagnostic information is written to the logrec
data set to identify the violation.

Security Administrator Response: Contact the
designated support group for your installation.

ATB80136I Conversation was terminated because
the unit of recovery was resolved by
the installation before a syncpt
decision was received from the syncpt
initiator.

System Action: The called service returns a return
code of resource_failure_no_retry (decimal 26). The
conversation has been deallocated and all resources
associated with the conversation have been cleaned up.

Detecting Module:
ATBPCEU

ATB80138I Sync_level of Syncpt is not valid when
the partner LU only supports single
sessions.

Explanation: A TP called the LU 6.2 Allocate service
or CPI-C Allocate Service to allocate a conversation
with a synchronization level of sync_level_syncpt. The
request failed because the partner lu session capability
is not parallel. APPC/MVS does not support allocating
syncpt conversations with a partner lu that does not
have parallel session capability.

System Action: The called service returns a return
code of product_specific_error (decimal 20). The
conversation was not allocated.

Detecting Module:
ATBAMAL

ATB80139I APPC/MVS detected an error during
Purge Log Name processing.

Explanation: A purge log name affinity (PLNA)
request either initiated or received by an APPC/MVS
logical unit failed.

System Action: A purge log name affinity (PLNA)
request failed. The system continues processing, but log
name affinities between an APPC/MVS logical unit and
a partner LU persist. The system writes this message to
the logrec data set.

Detecting Module:
ATBPCPL

Security Administrator Response: Use the
diagnostic records written to the logrec data set to
identify the reason for the failure.

ATB80140I From Resource Recovery Services
(RRS/MVS) callable service:
service_name. Error Return Code:
rrs_error_rc

Explanation: A TP called an APPC/MVS TP
conversation service to process a request for a
conversation with a synchronization level of syncpt. The
system could not process the request because a system
syncpoint manager (RRS) service failed during the
processing of the conversation service request.

In the message text:

service_name The name of the RRS service that
failed

rrs_error_rc The return code from the failing
service.

Source: APPC/MVS

Detecting Module:
ATBAMRC, ATBVSAL, ATBVSCA, ATBVSGC,
ATBVSRB, ATBVSSR

System Action: The system returns a
product_specific_error (decimal 20) return code to the
caller of the conversation service. The service
completes unsuccessfully.

Application Programmer Response: Contact the
System Programmer.

Security Administrator Response: Determine the
reason for the RRS service failure, using the name of
the RRS service and the return code. See z/OS MVS
Programming: Resource Recovery for the service and
return code description.

ATB80141I Retrieved incomplete UR that is in
in-doubt state was not found in the
APPC log.

Explanation: The contents of the APPC/MVS
logstream cannot be used to resolve incomplete units of
recovery in in-doubt state. The logstream may have
been deleted and redefined or an internal APPC/MVS
error has occured. As a result, APPC/MVS is unable to
automatically resynchronize these URs when the LU is
reinitialized.

Source: APPC/MVS

Detecting Module:
ATBPCRR

System Action: The unit of recovery remains in
in-doubt state until manual intervention resolves it.
APPC/MVS will not not perform resynchronization for
this UR.

Application Programmer Response: Contact the
System Programmer.

Chapter 11. Error_Extract Reason Codes and Messages 11-53

Security Administrator Response: Go to the RRS
administration panels and resolve the in-doubt UR
identified by urid. For more information on how to use
these panels, see z/OS MVS Programming: Resource
Recovery.

ATB80142 APPC/MVS terminated the
conversation because APPCCMD did
not complete in the time-out limit
specified by the caller.

Explanation: A TP called an APPC/MVS conversation
callable service that resulted in an invocation of the
VTAM APPCCMD macro. A timeout_value was specified
for the conversation using the Allocate or
Set_Timeout_Value service. The APPCCMD request did
not complete in the time limit specified. APPC/MVS
terminated the session to resolve a possible hang in the
VTAM APPCCMD processing. Termination of the
session also resulted in termination of the conversation.

Source: APPC/MVS

Detecting Module:
ATBAMAL, ATBAMCD, ATBAMCF, ATBAMDE,
ATBAMEL, ATBAMFL, ATBAMPT, ATBAMRE,
ATBAMSD, ATBAMSR

System Action: The system returns a
Resource_Failure_Retry (decimal 26) or
Resource_Failure_Retry_BO (decimal 133, for
SyncLevel=Syncpt conversation) return code to the
caller of the specified conversation service. If a
Resource_Failure_Retry or Resource_Failure_Retry_BO
return code cannot be returned for the specified
conversation service, then the system returns a
Product_Specific_Error (decimal 20) return code.

Application Programmer Response: In some cases
the delay in APPCCMD processing is expected. For
example, a TP expects the Receive_And_Wait service
to hang because the partner TP sends data
intermittently. In this situation abnormal termination of
the session may not be desirable. Change the
application either to remove a call to the
Set_Timeout_Value service or to specify a higher
Timeout_Value to match the expected delay. See
“Allocate” on page 8-1 or “Set_TimeOut_Value” on
page 8-131 for an explanation of the Timeout_Value
parameter.

11-54 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Part 4. Appendixes

© Copyright IBM Corp. 1991, 2001

z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Appendix A. Character Sets

APPC/MVS makes use of character strings composed of characters from one of the
following character sets:

v Character set 01134, which is composed of the uppercase letters A through Z
and numerals 0-9.

v Character set Type A, which is composed of the uppercase letters A through Z,
numerals 0-9, national characters (@, $, #), and must begin with either an
alphabetic or a national character.

v Character set 00640, which is composed of the uppercase and lowercase letters
A through Z, numerals 0-9, and 19 special characters. Note that APPC/MVS does
not allow blanks in 00640 character strings.

These character sets, along with hexadecimal and graphic representations, are
provided in the following table:

Table A-1. Character Sets 01134, Type A, and 00640
Hex
Code

Graphic Description Character Set
01134 Type A 00640

40 Blank
4B . Period X
4C < Less than sign X
4D (Left parenthesis X
4E + Plus sign X
50 & Ampersand X
5B $ Dollar sign X (Note 1)
5C * Asterisk X (Note 2)
5D) Right parenthesis X
5E ; Semicolon X
60 – Dash X
61 / Slash X
6B , Comma X (Note 3)
6C % Percent sign X
6D _ Underscore X
6E > Greater than sign X
6F ? Question mark X
7A : Colon X
7B # Pound sign X (Note 1)
7C @ At sign X (Note 1)
7D ' Single quote X
7E = Equals sign X
7F " Double quote X
81 a Lowercase a X
82 b Lowercase b X
83 c Lowercase c X
84 d Lowercase d X
85 e Lowercase e X
86 f Lowercase f X
87 g Lowercase g X
88 h Lowercase h X
89 i Lowercase i X
91 j Lowercase j X
92 k Lowercase k X
93 l Lowercase l X

© Copyright IBM Corp. 1991, 2001 A-1

Table A-1. Character Sets 01134, Type A, and 00640 (continued)
Hex
Code

Graphic Description Character Set
01134 Type A 00640

94 m Lowercase m X
95 n Lowercase n X
96 o Lowercase o X
97 p Lowercase p X
98 q Lowercase q X
99 r Lowercase r X
A2 s Lowercase s X
A3 t Lowercase t X
A4 u Lowercase u X
A5 v Lowercase v X
A6 w Lowercase w X
A7 x Lowercase x X
A8 y Lowercase y X
A9 z Lowercase z X
C1 A Uppercase A X X X
C2 B Uppercase B X X X
C3 C Uppercase C X X X
C4 D Uppercase D X X X
C5 E Uppercase E X X X
C6 F Uppercase F X X X
C7 G Uppercase G X X X
C8 H Uppercase H X X X
C9 I Uppercase I X X X
D1 J Uppercase J X X X
D2 K Uppercase K X X X
D3 L Uppercase L X X X
D4 M Uppercase M X X X
D5 N Uppercase N X X X
D6 O Uppercase O X X X
D7 P Uppercase P X X X
D8 Q Uppercase Q X X X
D9 R Uppercase R X X X
E2 S Uppercase S X X X
E3 T Uppercase T X X X
E4 U Uppercase U X X X
E5 V Uppercase V X X X
E6 W Uppercase W X X X
E7 X Uppercase X X X X
E8 Y Uppercase Y X X X
E9 Z Uppercase Z X X X
F0 0 Zero X X X
F1 1 One X X X
F2 2 Two X X X
F3 3 Three X X X
F4 4 Four X X X
F5 5 Five X X X
F6 6 Six X X X
F7 7 Seven X X X
F8 8 Eight X X X
F9 9 Nine X X X

Character Sets

A-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Notes:

1. Avoid these characters because they display differently depending on the
national language code page in use.

2. Avoid using the asterisk in TP names because it causes a subset list request
when entered on panels of the APPC administration dialog and in DISPLAY
APPC commands.

3. Avoid using the comma in TP names because it acts as a parameter delimiter
when entered in DISPLAY APPC commands.

Character Sets

Appendix A. Character Sets A-3

Character Sets

A-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Appendix B. Explanations of Return Codes for CPI
Communications Services

Table B-1 describes return codes that can be returned to a caller of a CPI
Communications service.

Table B-1. Return Codes for CPI Communications Services

Return Code Value, Meaning, and Action

0 Value : OK

Meaning: The call completed successfully.

System Action: The system continues processing.

Application Programmer Response : None required.

1 Value : Allocate_failure_no_retry

Meaning : A TP submitted an allocate request. The request specified a value on the Return_control
parameter that was other than Immediate. One of the following occurred:

v Virtual telecommunications access method (VTAM) could not establish a session with the partner
LU.

v APPC/MVS could not establish a conversation.

System Action: The system returns this return code to the caller of Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1 for methods to use to diagnose the return code. See “Error_Extract” on page 8-34 for
the Error_Extract calling format.

See z/OS Communications Server: SNA Programmer’s LU 6.2 Guide for a description of the sense
codes included in the message from Error_Extract. If the error persists, verify that the name
specified on the Local_LU_name parameter is correct. If the name is correct, contact the system
programmer.

System Programmer Response : At the request of the application programmer, ensure that the
local LU is defined correctly in the VTAM application (APPL) statement in SYS1.VTAMLST.

2 Value : Allocate_failure_retry

Meaning: A TP submitted an allocate request. The request specified a value on the Return_control
parameter that was other than Immediate. The system cannot allocate the conversation because of
a condition that might be temporary.

System Action: The system returns this return code to the caller of Allocate.

Application Programmer Response : Retry the allocate request.

3 Value : Conversation_type_mismatch

Meaning: The partner LU rejected an allocate request. The local TP called the Allocate service and
specified a value of Basic_conversation or Mapped_conversation on the Conversation_type
parameter. The partner TP does not support the respective basic or mapped conversation protocol
boundary.

System Action: The system returns this return code on a call that occurs after the call to Allocate.

Application Programmer Response : When requesting the allocate, change the
Conversation_type parameter to specify a conversation type that the partner TP supports.

© Copyright IBM Corp. 1991, 2001 B-1

Table B-1. Return Codes for CPI Communications Services (continued)

Return Code Value, Meaning, and Action

6 Value : Security_not_valid

Meaning: The partner LU rejected an allocate request. The specified security information is not
valid.

System Action: The system returns this return code on a call that occurs after the call to Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1 for methods to use to diagnose the return code. See “Error_Extract” on page 8-34 for
the Error_Extract calling format.

8 Value : Sync_lvl_not_supported_pgm

Meaning: The partner LU rejected an allocate request. The local TP specified a synchronization
level (on the Sync_level parameter) that the partner TP does not support.

System Action: The system returns this return code on a call that occurs after the call to Allocate.

Application Programmer Response : See “Allocate” on page 8-1 for an explanation of the
Sync_level parameter. When requesting the allocate, ensure that the Sync_level parameter
specifies a correct value.

9 Value : TPN_not_recognized

Meaning: The partner LU rejected an allocate request. The local TP specified a partner TP that the
partner LU does not recognize.

System Action: The system returns this return code on a call that occurs after the call to Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1 for methods to use to diagnose the return code. See “Error_Extract” on page 8-34 for
the Error_Extract calling format.

10 Value : TP_not_available_no_retry

Meaning: The partner LU rejected an Allocate request. The local TP specified a partner TP that is
known to the partner LU, but the partner LU cannot start the TP. The condition is not temporary.
The TP should not retry the Allocate request.

System Action: The system returns this return code on a call that occurs after the call to Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1 for methods to use to diagnose the return code. See “Error_Extract” on page 8-34 for
the Error_Extract calling format.

11 Value : TP_not_available_retry

Meaning: The partner LU rejected an allocate request. The local TP specified a partner TP that the
partner LU recognizes but cannot start. The condition might be temporary.

System Action: The system returns this return code on a call that occurs after the call to Allocate.

Application Programmer Response : Retry the allocate request. If the error persists, see
“Chapter 6. Diagnosing Problems with APPC/MVS TPs” on page 6-1 for methods to use to
diagnose the return code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

Return Codes

B-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table B-1. Return Codes for CPI Communications Services (continued)

Return Code Value, Meaning, and Action

17 Value : Deallocated_abend

Meaning: A partner TP called the Deallocate service. The request specified a Deallocate_type of
Deallocate_abend.

System Action: If the partner TP was in Receive state when it called Deallocate, the system
purges information sent by the local TP that was not received by the partner TP. The system
returns this return code to the local TP when it calls an APPC service in Send or Receive state.

Application Programmer Response : See “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1 for methods to use to diagnose the return code. See “Error_Extract” on page 8-34 for
the Error_Extract calling format.

18 Value : Deallocated_normal

Meaning: A partner TP called the Deallocate service for a basic or mapped conversation. The
request specified a Deallocate_type of Deallocate_sync_level or Deallocate_flush.

System Action: The system returns this return code to the local TP when it calls a service while
the conversation is in Receive state.

Application Programmer Response : See “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1 for methods to use to diagnose the return code. See “Error_Extract” on page 8-34 for
the Error_Extract calling format.

19 Value : Parameter_error

Meaning: A local TP called an APPC service. A parameter specified on the call is not valid. One of
the following occurred:
v SNASVCMG was specified as the mode name, or the mode name was not valid.
v X'0E' or X'0F' was used as the first character of a TP name.
v X'06' was used as the first character of a TP name by a caller that was not running either in

supervisor state or with PSW key 0-7.
v An SNA service TP name was used with a mapped conversation service.

System Action: The system might write symptom records, which describe the error, to the logrec
data set.

Application Programmer Response : See “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1 for methods to use to diagnose the return code. See “Error_Extract” on page 8-34 for
the Error_Extract calling format.

20 Value : Product_specific_error

Meaning: The system found a product-specific error.

System Action: The system might write symptom records, which describe the error, to the logrec
data set.

Application Programmer Response : See “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1 for methods to use to diagnose the return code. See “Error_Extract” on page 8-34 for
the Error_Extract calling format. If necessary, see “Diagnosing Product-Specific Errors” on
page 6-46 for more information about product-specific errors.

Return Codes

Appendix B. Explanations of Return Codes for CPI Communications Services B-3

Table B-1. Return Codes for CPI Communications Services (continued)

Return Code Value, Meaning, and Action

21 Value : Program_error_no_trunc

Meaning : Indicates one of the following:

v A partner TP called the Send_Error service for a mapped conversation. The conversation for the
local TP was in Send state. No truncation occurs at the mapped conversation protocol boundary.

v A partner TP called Send_Error for a basic conversation. The conversation was in Send state.
The call did not truncate a logical record. No truncation occurs at the basic conversation protocol
boundary when a TP calls Send_Error either before sending any logical records or after sending
a complete logical record.

System Action: The system returns this return code to the local TP when it calls the Receive
service, before the TP receives any data records or after it receives one or more data records.

Application Programmer Response : See “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1 for methods to use to diagnose the return code. See “Error_Extract” on page 8-34 for
the Error_Extract calling format.

22 Value : Program_error_purging

Meaning: A partner TP called the Send_Error service for a basic or mapped conversation. The
conversation for the partner TP was in Receive or Confirm state.

System Action: The system returns this return code to the local TP when it calls an APPC service
before sending any information. If the TP called Send_Error while in Receive state and before it
received all the information that the partner TP sent, the system might purge the data. If the TP
called Send_Error while in Receive or Confirm state but after it received all the information that the
partner TP sent, the system does not purge the data.

Application Programmer Response : See “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1 for methods to use to diagnose the return code. See “Error_Extract” on page 8-34 for
the Error_Extract calling format.

23 Value : Program_error_trunc

Meaning: The partner TP called the Send_Error service for a basic conversation. The conversation
for the partner TP was in Send state, and the call truncated a logical record. Truncation occurs at
the basic conversation protocol boundary when a TP begins sending a logical record and then
makes a Send_error call before sending the complete logical record.

System Action: The system returns this return code to the local TP on a Receive call that occurs
after the TP receives the truncated logical record.

Application Programmer Response : See “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1 for methods to use to diagnose the return code. See “Error_Extract” on page 8-34 for
the Error_Extract calling format.

24 Value : Program_parameter_check

Meaning: For the CPI Communications Initialize_Conversation service, the SYMDEST name was
not found in the side information.

System Action: The system returns this return code to the caller of the APPC service in error.

Application Programmer Response : See “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1 for methods to use to diagnose the return code. See “Error_Extract” on page 8-34 for
the Error_Extract calling format.

Return Codes

B-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table B-1. Return Codes for CPI Communications Services (continued)

Return Code Value, Meaning, and Action

25 Value : Program_state_check

Meaning: The local TP called a service while running in a state in which the call is not valid. The
TP should not examine any other returned variables associated with the call because nothing is
placed in those variables.

System Action: The state of the conversation remains unchanged. For a list of states that are
valid for each call, see “Appendix C. APPC/MVS Conversation State Table” on page C-1.

Application Programmer Response : See “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1 for methods to use to diagnose the return code. See “Error_Extract” on page 8-34 for
the Error_Extract calling format.

26 Value : Resource_failure_no_retry

Meaning: An error caused the conversation to terminate. The condition is not temporary. The
application should not try to run the transaction until the condition is corrected.

System Action: The system terminates the conversation.

Application Programmer Response : See “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1 for methods to use to diagnose the return code. See “Error_Extract” on page 8-34 for
the Error_Extract calling format.

27 Value : Resource_failure_retry

Meaning: An error caused the conversation to terminate. The condition might be temporary.

System Action: The system terminates the conversation.

Application Programmer Response : Retry the transaction.

28 Value : Unsuccessful

Meaning: A call to a TP conversation service was not successful.

System Action: The system returns this return code to the caller of the APPC service in error.

Application Programmer Response : See “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1 for methods to use to diagnose the return code. See “Error_Extract” on page 8-34 for
the Error_Extract calling format.

30 Value : Deallocated_abend_SVC

Meaning: The partner TP called Deallocate with a Deallocate_type of Deallocate_abend_SVC.

System Action: If the partner TP was in Receive state when it called Deallocate, the system
purges all information that was sent by the local TP but was not yet received by the partner TP.
The system returns this return code to the local TP when it calls a service while in Send or
Receive state.

Application Programmer Response : See “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1 for methods to use to diagnose the return code. See “Error_Extract” on page 8-34 for
the Error_Extract calling format.

Return Codes

Appendix B. Explanations of Return Codes for CPI Communications Services B-5

Table B-1. Return Codes for CPI Communications Services (continued)

Return Code Value, Meaning, and Action

31 Value : Deallocated_abend_timer

Meaning: A partner TP called the Deallocate service with a Deallocate_type of
Deallocate_abend_timer.

System Action: If the partner TP was in Receive state when it called Deallocate, the system
purges all information that was sent by the local TP but was not yet received by the partner TP.
The system returns this return code to the local TP when it calls a service while in Send or
Receive state.

Application Programmer Response : See “Chapter 6. Diagnosing Problems with APPC/MVS TPs”
on page 6-1 for methods to use to diagnose the return code. See “Error_Extract” on page 8-34 for
the Error_Extract calling format.

100 Value : Take_backout

Meaning : This value is returned only when all of the following conditions are true:

v The Sync_level is set to syncpt.

v The conversation is not in Initialize state.

v The program is using protected resources that must be backed out.

System Action : The system returns this return code to the caller of the service.

Application Programmer Response : Before it can use this conversation or any other protected
conversations associated with the current context again, the local TP must issue a Backout call to
restore all protected resources to their status as of the last synchronization point.

130 Value : Deallocated_abend_bo Meaning : This return code is returned only for conversations with
Sync_level set to syncpt.

The partner program issued a Deallocate call with Deallocate_type set to deallocate_abend, or the
partner LU has done so because of a partner program abnormal-end condition.

System Action : If the conversation for the partner program was in Receive state when the call
was issued, information sent by the local program and not yet received by the partner program is
purged. The conversation is now in Reset state.

Application Programmer Response : Before it can use any other protected conversations
associated with the current context again, the local TP must issue a Backout call to restore all
protected resources to their status as of the last synchronization point.

131 Value : Deallocated_abend_SVC_bo Meaning : This return code is returned only for conversations
with Sync_level set to syncpt.

The partner TP called Deallocate with a Deallocate_type of deallocate_abend_SVC.

System Action : If the partner TP was in Receive state when it called Deallocate, the system
purges all information that was sent by the local TP but was not yet received by the partner TP.
The system returns this return code to the local TP when it calls a service while in Send or
Receive state.

Application Programmer Response : Before it can use any other protected conversations
associated with the current context again, the local TP must issue a Backout call to restore all
protected resources to their status as of the last synchronization point.

Return Codes

B-6 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table B-1. Return Codes for CPI Communications Services (continued)

Return Code Value, Meaning, and Action

132 Value : Deallocated_abend_timer_bo Meaning : This return code is returned only for conversations
with Sync_level set to syncpt.

A partner TP called the Deallocate service with a Deallocate_type of deallocate_abend_timer.

System Action : If the partner TP was in Receive state when it called Deallocate, the system
purges all information that was sent by the local TP but was not yet received by the partner TP.
The system returns this return code to the local TP when it calls a service while in Send or
Receive state.

Application Programmer Response : Before it can use any other protected conversations
associated with the current context again, the local TP must issue a Backout call to restore all
protected resources to their status as of the last synchronization point.

133 Value : Resource_failure_no_retry_bo Meaning : This return code is returned only for conversations
with Sync_level set to syncpt.

An error caused the conversation to terminate. The condition is not temporary. The application
should not try to run the transaction until the condition is corrected.

System Action : The system terminates the conversation.

Application Programmer Response : Before it can use any other protected conversations
associated with the current context again, the local TP must issue a Backout call to restore all
protected resources to their status as of the last synchronization point.

134 Value : Resource_failure_retry_bo Meaning : This return code is returned only for conversations
with Sync_level set to syncpt.

An error caused the conversation to terminate. The condition might be temporary.

System Action : The system terminates the conversation.

Application Programmer Response : Before it can use any other protected conversations
associated with the current context again, the local TP must issue a Backout call to restore all
protected resources to their status as of the last synchronization point.

135 Value : Resource_failure_retry_bo Meaning : This return code is returned only for conversations
with Sync_level set to syncpt.

When the Send_Error call is issued in Receive state, incoming information is purged by the
system. This purged information might include an abend deallocation notification from the partner
program or system. The conversation is now in Reset state.

System Action : The system returns this return code to the caller of the service.

Application Programmer Response : Before it can use any other protected conversations
associated with the current context again, the local TP must issue a Backout call to restore all
protected resources to their status as of the last synchronization point.

Return Codes

Appendix B. Explanations of Return Codes for CPI Communications Services B-7

Return Codes

B-8 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Appendix C. APPC/MVS Conversation State Table

The APPC/MVS conversation state table shows when and where different
APPC/MVS TP conversation calls can be issued. For example, a program must
issue an ATBALLC call to allocate a conversation before issuing an ATBSEND call
to send data.

Any APPC/MVS callable services (ATBxxxxx) that are not listed here are
unrestricted by conversation state.

To see the conversation state table for the CPI Communications calls (CMxxxx) that
you can issue under APPC/MVS, refer to the CPI-C Reference. APPC/MVS
supports the states and transitions for the CPI calls as documented in that book.

When a program is in the Backout-required state, which is not a conversation state
because it applies to all of the program’s protected resources, the program should
issue a Backout call. Until it issues a Backout call, the program will be unable to
issue any of the following calls for any of its conversations with sync_level set to
Syncpt that are associated with the current context. If the program issues any of
these calls, the Program_state_check return code will be returned:

v Allocate

v Confirm

v Confirmed

v Flush

v Prepare_To_Receive

v Receive

v Request_To_Send

v Send_Data

v Send_Error

As described in “Chapter 2. Designing and Writing an APPC/MVS Transaction
Program” on page 2-1, APPC/MVS uses the concepts of states and state transitions
to simplify explanations of the restrictions that are placed on the calls. A number of
states are defined for APPC/MVS and, for any given call, a number of transitions
are allowed. Table C-1 on page C-5 shows the state table, which describes the state
transitions that are allowed for the APPC/MVS conversation calls.

Explanation of State-Table Abbreviations
Abbreviations are used in the state table to indicate the different permutations of
calls and characteristics. There are three categories of abbreviations:

v Conversation characteristic abbreviations are enclosed by parenthesis — “(...)”

v return_code abbreviations are enclosed by brackets — “[...]”

v data_received and status_received abbreviations are enclosed by braces and
separated by a comma — “{...,...}” — where the abbreviation before the comma
represents the data_received value and the abbreviation after the comma
represents the value of status_received.

The next sections show the abbreviations used in each category.

© Copyright IBM Corp. 1991, 2001 C-1

Conversation Characteristics ()
The following abbreviations are used for conversation characteristics:

Abbreviation Meaning
A deallocate_type is set to DEALLOCATE_ABEND
B send_type is set to BUFFER_DATA
C For a Deallocate call, C means one of the following:

v deallocate_type is set to DEALLOCATE_CONFIRM
v deallocate_type is set to DEALLOCATE_SYNC_LVL and sync_level

is set to CONFIRM.

For a Prepare_To_Receive, C means one of the following:
v prepare_to_receive_type is set to PREP_TO_RECEIVE_CONFIRM
v prepare_to_receive_type is set to

PREP_TO_RECEIVE_SYNC_LEVEL and sync_level is set to
CONFIRM

For a Send_Data call, C means the following:

v send_type is set to SEND_AND_CONFIRM
D send_type is set to SEND_AND_DEALLOCATE.
F For a Deallocate call, F means one of the following:

v deallocate_type is set to DEALLOCATE_FLUSH
v deallocate_type is set to DEALLOCATE_SYNC_LEVEL and

sync_level is set to NONE.

For a Prepare_To_Receive call, F means one of the following:
v prepare_to_receive_type is set to PREP_TO_RECEIVE_FLUSH
v prepare_to_receive_type is set to

PREP_TO_RECEIVE_SYNC_LEVEL and sync_level is set to
NONE.

For a Send_Data call, F means the following:

v send_type is set to SEND_AND_FLUSH
P send_type is set to SEND_AND_PREP_TO_RECEIVE
S For a Deallocate call, S means:

v deallocate_type is set to DEALLOCATE_SYNC_LVL and sync_level
is set to Syncpt.

For a Prepare_To_Receive call, S means:
v prepare_to_receive_type is set to

PREP_TO_RECEIVE_SYNC_LEVEL and sync_level is set to
Syncpt.

* For a Send_Data call, * means the characteristics can be B, C, D, F, or
P.

State Table

C-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Return Code Values []
The following abbreviations are used for return codes:

Abbreviation Meaning
ae For an Allocate call, ae means one of the following:

v ALLOCATE_FAILURE_NO_RETRY
v ALLOCATE_FAILURE_RETRY

For any other call, ae means one of the following:
v CONVERSATION_TYPE_MISMATCH
v PIP_NOT_SPECIFIED_CORRECTLY
v SECURITY_NOT_VALID
v SYNC_LEVEL_NOT_SUPPORTED_PGM
v TPN_NOT_RECOGNIZED
v TP_NOT_AVAILABLE_NO_RETRY
v TP_NOT_AVAILABLE_RETRY

bo v When returned on conversation calls, bo means
(CM_)TAKE_BACKOUT. This return code is returned only for
conversations with sync_level set to Syncpt.

v When returned on the Commit call, bo means RR_BACKED_OUT.
bom bom is a return code for Commit and Backout. It means

RR_BACKED_OUT_OUTCOME_MIXED.
bop bop is a return code for Commit and Backout. It means

RR_BACKED_OUT_OUTCOME_PENDING.
com com is a return code for Commit. It means

RR_COMMITTED_OUTCOME_MIXED.
cop cop is a return code for Commit. It means

RR_COMMITTED_OUTCOME_PENDING.
sc sc is a return code for Commit. It means PROGRAM_STATE_CHECK.
da da means one of the following:

v DEALLOCATED_ABEND
v DEALLOCATED_ABEND_SVC
v DEALLOCATED_ABEND_TIMER

db db is returned only for conversations with sync_level set to Syncpt and
means one of the following:

v DEALLOCATED_ABEND_BO

v DEALLOCATED_ABEND_SVC_BO

v DEALLOCATED_ABEND_TIMER_BO
dn DEALLOCATED_NORMAL
dnb DEALLOCATED_NORMAL_BO. This return code is returned only for

conversations with sync_level set to Syncpt.
en en means one of the following:

v PROGRAM_ERROR_NO_TRUNC
v SVC_ERROR_NO_TRUNC

ep ep means one of the following:
v PROGRAM_ERROR_PURGING
v SVC_ERROR_PURGING

et et means one of the following:
v PROGRAM_ERROR_TRUNC
v SVC_ERROR_TRUNC

ok OK
pe PARAMETER_ERROR
pc PROGRAM_PARAMETER_CHECK
rb rb is returned only for conversations with sync_level set to Syncpt and

means one of the following:

v RESOURCE_FAILURE_NO_RETRY_BO

v RESOURCE_FAILURE_RETRY_BO

State Table

Appendix C. APPC/MVS Conversation State Table C-3

Abbreviation Meaning
rf RESOURCE_FAILURE_NO_RETRY or

RESOURCE_FAILURE_RETRY
un UNSUCCESSFUL

Note: The return code PRODUCT_SPECIFIC_ERROR is not included in the state
table because the state transitions caused by this return code are based on
the environment in which the specific error is encountered. The TP may
issue the APPC/MVS Error_Extract service to help diagnose the problem that
was encountered by APPC/MVS.

Data_received and Status_received {, }
The following abbreviations are used for the data_received values:

Abbreviation Meaning
dr Means one of the following:

v DATA_RECEIVED
v COMPLETE_DATA_RECEIVED
v INCOMPLETE_DATA_RECEIVED

nd NO_DATA_RECEIVED
* Means one of the following:

v DATA_RECEIVED
v COMPLETE_DATA_RECEIVED
v NO_DATA_RECEIVED

The following abbreviations are used for the status_received values:

Abbreviation Meaning
cd CONFIRM_DEALLOC_RECEIVED
cs CONFIRM_SEND_RECEIVED
co CONFIRM_RECEIVED
no NO_STATUS_RECEIVED
se SEND_RECEIVED
tc TAKE_COMMIT. This value is returned only for conversations with

sync_level set to Syncpt.
td TAKE_COMMIT_DEALLOCATE. This value is returned only for

conversations with sync_level set to Syncpt.
ts TAKE_COMMIT_SEND. This value is returned only for conversations

with sync_level set to Syncpt.

Table Symbols
The following symbols are used in the state table to indicate the condition that
results when a call is issued from a certain state:

Symbol Meaning
– Remain in current state
1-8 Number of next state
> State error. A return_code of PROGRAM_STATE_CHECK is

returned. For calls illegally issued in Reset state, this condition is
indicated to the program with a return code of
PROGRAM_PARAMETER_CHECK. This is because the program is
in Reset state and the conversation_ID for the conversation is
undefined.

State Table

C-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Symbol Meaning
| For programs not using sync_level set to Syncpt, this symbol

should be ignored. For programs using sync_level set to Syncpt,
when this symbol follows a state number or a – (for example, 1| or
–|), it means the program may be in the Backout-Required
condition following the call.

↑ For programs not using sync_level set to Syncpt, this symbol
should be ignored. For programs using sync_level set to Syncpt,
when this symbol follows the name of a call (for example,
ATBDEAL(F)[ok]↑), it means that it is valid to make this call (for
example, ATBDEAL(F)) as indicated in the state transition table
unless the program is in the Backout-required condition. In that
case, the call is invalid and PROGRAM_STATE_CHECK is
returned.

Conversations with sync_level set to Syncpt go to the state they
were in at the completion of the most recent synchronization point.
If there was no prior synchronization event, the side of allocator
goes to Send state, and the allocatee goes to the Receive state.

How to Use the State Table
The various calls and combinations of parameters, also referred to as inputs, are
shown along the left side of the table. These inputs correspond to the rows of the
table. The possible states are shown across the top of the table. The states
correspond to the columns of the matrix. The intersection of input (row) and state
(column) represents what state transition, if any, will occur for the APPC/MVS call
that is issued in that particular state.

For example, look at ATBALLC[ok]. The [ok] indicates that a return code of OK was
received on the call. By examining the row, notice that the call can be issued only in
Reset state (state 1).

When issued in state 1, the 3 in the column for Reset indicates that the program
progresses to state 3, Send . A scan down this column shows that the ATBSEND
call can be made from here. Some variations in the ATBSEND row that entail a
change of state are for return codes of:

v “ok” when the conversation characteristic (P) indicates that the send_type is set
to SEND_AND_PREP_TO_RECEIVE, which allows the program to progress to
state 4.

v “ok” when the conversation characteristic (D) indicates that the send_type is set
to SEND_AND_DEALLOCATE, which puts the program back into Reset state
(state 1).

Table C-1. States and Transitions for APPC/MVS Conversation Calls

Inputs
Used by all conversations Used only by conversations with

sync_level set to Syncpt
Re-
set

1

Ini-
tial-
ize

2

Send

3

Re-
ceive

4

Send
Pend-
ing

5

Con-
firm

6

Con-
firm
Send

7

Con-
firm
Deal
-
locate

8

Defer-
Re-
ceive

9

Defer-
Deal-
locate

10

Sync-
Point

11

Sync-
Point
Send

12

Sync-
Point
Deal-
locate

13

ATBALC2[ok]↑ 3 > > > > > > > > > > > >
ATBALC2[ae] – > > > > > > > > > > > >
ATBALC2[pe] – > > > > > > > > > > > >
ATBALC2[pc] – > > > > > > > > > > > >

State Table

Appendix C. APPC/MVS Conversation State Table C-5

Table C-1. States and Transitions for APPC/MVS Conversation Calls (continued)

Inputs
Used by all conversations Used only by conversations with

sync_level set to Syncpt
Re-
set

1

Ini-
tial-
ize

2

Send

3

Re-
ceive

4

Send
Pend-
ing

5

Con-
firm

6

Con-
firm
Send

7

Con-
firm
Deal
-
locate

8

Defer-
Re-
ceive

9

Defer-
Deal-
locate

10

Sync-
Point

11

Sync-
Point
Send

12

Sync-
Point
Deal-
locate

13

ATBALC2[un] – > > > > > > > > > > > >
ATBALLC[ok]↑ 3 > > > > > > > > > > > >
ATBALLC[ae] – > > > > > > > > > > > >
ATBALLC[pe] – > > > > > > > > > > > >
ATBALLC[pc] – > > > > > > > > > > > >
ATBALLC[un] – > > > > > > > > > > > >
ATBCFM[ok]↑ > > – > 3 > > > 4 > > > >
ATBCFM[ae] > > 1 > 1 > > > 1 > > > >
ATBCFM[da] > > 1 > 1 > > > 1 > > > >
ATBCFM[ep] > > 4 > 4 > > > 4 > > > >
ATBCFM[rf] > > 1 > 1 > > > 1 > > > >
ATBCFM[pc] > > – > – > > > – > > > >
ATBCFM[bo] > > –| > 3| > > > 4| > > > >
ATBCFM[rb] > > 1| > 1| > > > 1| > > > >
ATBCFM[db] > > 1| > 1| > > > 1| > > > >
ATBCFMD[ok]↑ > > > > > 4 3 1 > > > > >
ATBCFMD[pc] > > > > > – – – > > > > >
ATBDEAL(F)[ok]↑ > > 1 > 1 > > > > > > > >
ATBDEAL(F)[pc] > > – > – > > > > > > > >
ATBDEAL(C)[ok] > > 1 > 1 > > > > > > > >
ATBDEAL(C)[ae] > > 1 > 1 > > > > > > > >
ATBDEAL(C)[da] > > 1 > 1 > > > > > > > >
ATBDEAL(C)[ep] > > 4 > 4 > > > > > > > >
ATBDEAL(C)[rf] > > 1 > 1 > > > > > > > >
ATBDEAL(C)[pc] > > – > – > > > > > > > >
ATBDEAL(A)[ok] > > 1| 1| 1| 1| 1| 1| 1| 1| 1| 1| 1|
ATBDEAL(A)[pc] > > – – – – – – – – – – –
ATBDEAL(S)[ok]↑ > > 10 > 10 > > > > > > > >
ATBDEAL(S)[pc] > > – > – > > > > > > > >
ATBFLUS[ok]↑ > > – > 3 > > > 4 > > > >
ATBFLUS[pc] > > – > – > > > – > > > >
ATBGETC[ok] 4 > > > > > > > > > > > >
ATBGETC[pc] – > > > > > > > > > > > >
ATBGTA2 > > – – – – – – – – – – –
ATBGETA > > – – – – – – – – – – –
ATBPOR2 > > > – > > > > > > > > >
ATBPTR(F)[ok]↑ > > 4 > 4 > > > > > > > >
ATBPTR(F)[pc] > > – > – > > > > > > > >
ATBPTR(S)[ok]↑ > > 9 > 9 > > > > > > > >
ATBPTR(S)[pc] > > – > – > > > > > > > >
ATBPTR(C)[ok]↑ > > 4 > 4 > > > > > > > >
ATBPTR(C)[ae] > > 1 > 1 > > > > > > > >
ATBPTR(C)[da] > > 1 > 1 > > > > > > > >
ATBPTR(C)[ep] > > 4 > 4 > > > > > > > >
ATBPTR(C)[rf] > > 1 > 1 > > > > > > > >
ATBPTR(C)[pc] > > – > – > > > > > > > >
ATBPTR(C)[bo] > > 4| > 4| > > > > > > > >

State Table

C-6 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table C-1. States and Transitions for APPC/MVS Conversation Calls (continued)

Inputs
Used by all conversations Used only by conversations with

sync_level set to Syncpt
Re-
set

1

Ini-
tial-
ize

2

Send

3

Re-
ceive

4

Send
Pend-
ing

5

Con-
firm

6

Con-
firm
Send

7

Con-
firm
Deal
-
locate

8

Defer-
Re-
ceive

9

Defer-
Deal-
locate

10

Sync-
Point

11

Sync-
Point
Send

12

Sync-
Point
Deal-
locate

13

ATBPTR(C)[db] > > 1| > 1| > > > > > > > >
ATBPTR(C)[rb] > > 1| > 1| > > > > > > > >
ATBRCVI[ok]{dr,no}↑ > > > – > > > > > > > > >
ATBRCVI[ok]{nd,se} > > > 3 > > > > > > > > >
ATBRCVI[ok]{dr,se} > > > 5 > > > > > > > > >
ATBRCVI[ok]{*,co} > > > 6 > > > > > > > > >
ATBRCVI[ok]{*,cs} > > > 7 > > > > > > > > >
ATBRCVI[ok]{*,cd} > > > 8 > > > > > > > > >
ATBRCVI[ok]{*,tc} > > > 11 > > > > > > > > >
ATBRCVI[ok]{*,ts} > > > 12 > > > > > > > > >
ATBRCVI[ok]{*,td} > > > 13 > > > > > > > > >
ATBRCVI[ae]↑ > > > 1 > > > > > > > > >
ATBRCVI[da] > > > 1 > > > > > > > > >
ATBRCVI[dn] > > > 1 > > > > > > > > >
ATBRCVI[en] > > > – > > > > > > > > >
ATBRCVI[ep] > > > – > > > > > > > > >
ATBRCVI[et] > > > – > > > > > > > > >
ATBRCVI[rf] > > > 1 > > > > > > > > >
ATBRCVI[pc] > > > – > > > > > > > > >
ATBRCVI[un] > > > – > > > > > > > > >
ATBRCVI[bo] > > > –| > > > > > > > > >
ATBRCVI[db] > > > 1| > > > > > > > > >
ATBRCVI[rb] > > > 1| > > > > > > > > >
ATBRCVW[ok]{dr,no}↑ > > 4 – 4 > > > > > > > >
ATBRCVW[ok]{nd,se} > > – 3 3 > > > > > > > >
ATBRCVW[ok]{dr,se} > > 5 5 – > > > > > > > >
ATBRCVW[ok]{*,co} > > 6 6 6 > > > > > > > >
ATBRCVW[ok]{*,cs} > > 7 7 7 > > > > > > > >
ATBRCVW[ok]{*,cd} > > 8 8 8 > > > > > > > >
ATBRCVW[ok]{*,tc} > > 11 11 11 > > > > > > > >
ATBRCVW[ok]{*,ts} > > 12 12 12 > > > > > > > >
ATBRCVW[ok]{*,td} > > 13 13 13 > > > > > > > >
ATBRCVW[ae]↑ > > 1 1 1 > > > > > > > >
ATBRCVW[da] > > 1 1 1 > > > > > > > >
ATBRCVW[dn] > > 1 1 1 > > > > > > > >
ATBRCVW[en] > > 4 – 4 > > > > > > > >
ATBRCVW[ep] > > 4 – 4 > > > > > > > >
ATBRCVW[et] > > > – 4 > > > > > > > >
ATBRCVW[rf] > > 1 1 1 > > > > > > > >
ATBRCVW[pc] > > – – – > > > > > > > >
ATBRCVW[bo] > > 4| –| 4| > > > > > > > >
ATBRCVW[db] > > 1| 1| 1| > > > > > > > >
ATBRCVW[rb] > > 1| 1| 1| > > > > > > > >
ATBRJC2 > > > 1 > > > > > > > > >
ATBRTS[ok]↑ > > – – – – – – > > – – –
ATBRTS[pc] > > – – – – – – > > – – –
ATBSCA2 > – – – – – – – – – – – –

State Table

Appendix C. APPC/MVS Conversation State Table C-7

Table C-1. States and Transitions for APPC/MVS Conversation Calls (continued)

Inputs
Used by all conversations Used only by conversations with

sync_level set to Syncpt
Re-
set

1

Ini-
tial-
ize

2

Send

3

Re-
ceive

4

Send
Pend-
ing

5

Con-
firm

6

Con-
firm
Send

7

Con-
firm
Deal
-
locate

8

Defer-
Re-
ceive

9

Defer-
Deal-
locate

10

Sync-
Point

11

Sync-
Point
Send

12

Sync-
Point
Deal-
locate

13

ATBSEND(B)[ok]↑ > > – > 3 > > > > > > > >
ATBSEND(F)[ok] > > – > 3 > > > > > > > >
ATBSEND(C)[ok] > > – > 3 > > > > > > > >
ATBSEND(P(C))[ok] > > 4 > 4 > > > > > > > >
ATBSEND(P(F))[ok] > > 4 > 4 > > > > > > > >
ATBSEND(P(S))[ok] > > 9 > 9 > > > > > > > >
ATBSEND(D(A))[ok] > > 1| > 1| > > > > > > > >
ATBSEND(D(C))[ok] > > 1 > 1 > > > > > > > >
ATBSEND(D(F))[ok] > > 1 > 1 > > > > > > > >
ATBSEND(D(S))[ok] > > 10 > 10 > > > > > > > >
ATBSEND(*)[ae]↑ > > 1 > 1 > > > > > > > >
ATBSEND(*)[da] > > 1 > 1 > > > > > > > >
ATBSEND(*)[ep] > > 4 > 4 > > > > > > > >
ATBSEND(*)[rf] > > 1 > 1 > > > > > > > >
ATBSEND(*)[pc] > > – > – > > > > > > > >
ATBSEND(*)[bo] > > –| > 3| > > > > > > > >
ATBSEND(*)[db] > > 1| > 1| > > > > > > > >
ATBSEND(*)[rb] > > 1| > 1| > > > > > > > >
ATBSERR[ok]↑ > > – 3 3 3 3 3 > > 3 3 3
ATBSERR[ae] > > 1 > > > > > > > > > >
ATBSERR[da] > > 1 > > > > > > > > > >
ATBSERR[dn] > > > 1 > > > > > > > > >
ATBSERR[ep] > > 4 > > > > > > > > > >
ATBSERR[rf] > > 1 1 1 1 1 1 > > 1 1 1
ATBSERR[pc] > > – – – – – – > > – – –
ATBSERR[bo] > > –| > 3| > > > > > –| –| –|
ATBSERR[rb] > > 1| 1| 1| 1| 1| 1| > > 1| 1| 1|
ATBSERR[db] > > 1| > > > > > > > > > >
ATBSERR[dnb] > > > 1| > > > > > > > > >
SRRCMIT[ok] – – – > 3 > > > 4 1 4 3 1
SRRCMIT[cop] – – – > 3 > > > 4 1 4 3 1
SRRCMIT[com] – – – > 3 > > > 4 1 4 3 1
SRRCMIT[bo] – – # > # > > > # # # # #
SRRCMIT[bop] – – # > # > > > # # # # #
SRRCMIT[bom] – – # > # > > > # # # # #
SRRCMIT[sc] – – – > – > > > – – – – –
SRRBACK[ok] – – # # # # # # # # # # #
SRRBACK[bop] – – # # # # # # # # # # #
SRRBACK[bom] – – # # # # # # # # # # #

Notes:

1. For all SRRCMIT inputs: When a program started by an incoming allocation
request issues a Commit call before issuing an Accept_Conversation or
Get_Conversation for the conversation that started the program, the Commit call
has no effect on the conversation in Reset state. This behavior is different from
what the CPI-C Reference defines concerning the affect of issuing a Commit
call against a conversation in Reset state. CPI-C Reference states that when a

State Table

C-8 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

program started by an incoming allocation request issues a Commit call before
issuing an Accept_Conversation call (the CPI equivalent to Get_Conversation),
a state check results. The Commit call has no effect on other conversations in
Reset state.

2. For all SRRBACK inputs: When a program started by an incoming allocation
request issues a Backout call before issuing an Accept_Conversation or
Get_Conversation for the conversation that started the program, the Backout
call has no effect on the conversation in Reset state. This behavior is different
from what the CPI-C Reference defines concerning the affect of issuing an
SRRBACK call against a conversation in Reset state. CPI-C Reference states
that when a program started by an incoming allocation request issues a Backout
call before issuing an Accept_Conversation (the CPI equivalent to
Get_Conversation), the underlying LU 6.2 conversation is actually backed out,
though the conversation remains in Reset state. What this actually means is
that a Backout is flowed on the unaccepted LU 6.2 conversation on the behalf
of the application.

3. For all SRRCMIT and SRRBACK inputs: Conversations in Initialize state are
not affected by Commit and Backout calls.

State Table

Appendix C. APPC/MVS Conversation State Table C-9

State Table

C-10 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Appendix D. Support for SNA LU 6.2 Verbs and Option Sets

This appendix lists the APPC/MVS support for the verbs and option sets that are
defined by the SNA LU 6.2 architecture.

Mapping APPC/MVS TP Services to LU 6.2 Verbs and CPI
Communications

The following table lists the APPC/MVS services for transaction programs, showing
the corresponding verbs from the SNA LU 6.2 architecture and the equivalent CPI
Communications calls, if any.

Table D-1. List of APPC/MVS TP Callable Services with SNA and CPI-C Equivalents

APPC/MVS Service SNA LU 6.2 Verb CPI Communications Call

APPC/MVS TP Conversation Services

ATBALC5, ATBALC2 or ATBALLC (MC_)Allocate Initialize_Conv (CMINIT), Allocate
(CMALLC)

ATBCFM (MC_)Confirm Confirm (CMCFM)

ATBCFMD (MC_)Confirmed Confirmed (CMCFMD)

ATBDEAL (MC_)Deallocate Deallocate (CMDEAL)

ATBEES3 - Error_Extract (no SNA equivalent) (no CPI equivalent)

ATBFLUS (MC_)Flush Flush (CMFLUS)

ATBGTA2 or ATBGETA (MC_)Get_Attributes Extr_Conv_State (CMECS),
Extr_Mode_Name (CMEMN),
Extr_Part_LU_Name (CMEPLN),
Extr_Sync_Level (CMESL)

ATBGETC - Get_Conversation (no SNA equivalent) Accept_Conv (CMACCP)

ATBGETP or ATBGTP4 Get_TP_Properties (no CPI equivalent)

ATBGETT Get_Type Extr_Conv_Type (CMECT)

ATBPOR2 - Post_on_Receipt (no SNA equivalent) (no CPI equivalent)

ATBPTR (MC_)Prepare_to_Receive Prepare_to_Receive (CMPTR)

ATBRCVI (MC_)Receive_Immediate Receive (CMRCV)

ATBRCVW (MC_)Receive_and_Wait Receive (CMRCV)

ATBRTS (MC_)Request_to_Send Req_to_Send (CMRTS)

ATBSEND (MC_)Send_Data Send_Data (CMSEND)

ATBSERR (MC_)Send_Error Send_Error (CMSERR)

ATBSSO4 Set_Syncpt_Options (no CPI equivalent)

ATBSTO5 (no SNA equivalent) (no CPI equivalent)

APPC/MVS Advanced TP Services

ATBAMR1 - Asynchronous Manager
service

(no SNA equivalent) (no CPI equivalent)

ATBTEA1 - Accept_Test (no SNA equivalent) (no CPI equivalent)

ATBCUC1 or ATBCMCTU -
Unauthorized Cleanup_TP service

(no SNA equivalent) (no CPI equivalent)

ATBEXAI - Extract_Information (no SNA equivalent) (no CPI equivalent)

© Copyright IBM Corp. 1991, 2001 D-1

Table D-1. List of APPC/MVS TP Callable Services with SNA and CPI-C Equivalents (continued)

APPC/MVS Service SNA LU 6.2 Verb CPI Communications Call

ATBGTRN - Obtaining the Next
Transaction for Multi_Trans

(no SNA equivalent) (no CPI equivalent)

ATBTER1 - Register_Test (no SNA equivalent) (no CPI equivalent)

ATBRJC2 - Reject_Conversation (no SNA equivalent) (no CPI equivalent)

ATBRTRN - Restoring the Multi_Trans
Environment

(no SNA equivalent) (no CPI equivalent)

ATBSCA2 - Write user data to SMF
accounting record.

(no SNA equivalent) (no CPI equivalent)

ATBTEU1 - Unregister_Test (no SNA equivalent) (no CPI equivalent)

ATBVERS - Version service (no SNA equivalent) (no CPI equivalent)

APPC/MVS Support for LU 6.2 Option Sets
This section describes the support provided by APPC/MVS for the option sets listed
in the SNA LU 6.2 architecture. Option sets are LU 6.2 functions that are not
required for the minimum implementation of a type 6.2 LU. The option set number
is in parentheses following the option set name. For more information about the LU
6.2 option sets, see SNA Transaction Programmer’s Reference Manual for LU 6.2.

Flush the LU’s Send Buffer (101)
This option set allows a program to explicitly cause the LU to transmit any data in
its send buffer, regardless of the amount of data in the buffer. Support for this option
set is provided in the ATBFLUS and CMFLUS communications calls.

Get Attributes (102)
This option set allows a program to obtain attributes of the conversation. Support
for this option set is provided in the ATBGTA2 and ATBGETA communications calls.

Prepare to Receive (105)
This option set allows a program to change the conversation from Send state to
Receive state and at the same time flush the LU’s send buffer or request
confirmation. Support for this option set is provided in the ATBPTR and CMPTR
communications calls.

Receive Immediate (106)
This option set allows a program to receive whatever information is available on a
conversation without having to request posting of the conversation. Support for this
option set is provided in the ATBRCVI and CMRCV communications calls.

Sync Point Services (108)
This option set allows a program to request sync point processing for all protected
resources of the transaction. Support for this option set is provided by RRS and
APPC/MVS, through the SRRCMIT and SRRBACK calls, and the ATBSSO4 call,
respectively.

Support for SNA LU 6.2 Verbs and Option Sets

D-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Get Conversation Type (110)
This option set allows a program that supports both the basic conversation and
mapped conversation protocol boundaries to determine which category of verbs it
should use in conjunction with a resource ID. Support for this option set is provided
in the ATBGETT and CMECT communications calls.

Queued Allocation of a Conwinner Session (201)
This option set allows a local program to allocate a conversation to a remote
program on a session for which the local LU must be the contention winner and for
which the local program will wait. Support for this option set is provided in the
ATBALC2 or ATBALLC communications calls.

Immediate Allocation of a Session (203)
This option set allows a program to allocate a contention-winner session only if the
session is immediately available; otherwise, the allocation is unsuccessful. Support
for this option set is provided in the ATBALC2, ATBALLC, and CMALLC
communications calls.

Conversations between Programs Located at the Same LU (204)
This option set allows a local program to allocate a conversation to a program at
the same LU as the local program. Support for this option set is provided in the
ATBALC2, ATBALLC, and CMALLC communications calls.

Session-Level LU-LU Verification (211)
Allows a program or operator to designate the LU-LU passwords, associated with
remote LUs, that the local LU uses to verify the identity of a remote LU at session
activation time. VTAM support for this option set is provided by the VERIFY operand
of the VTAM APPL statement. RACF support for this option set is provided by the
SESSKEY field of the SESSION segment of the APPCLU profile.

User ID Verification (212)
Allows a program or operator to designate the user IDs and associated passwords
that the local LU uses to verify the identity of a user ID carried on allocation
requests it receives, and to designate the remote LUs that are permitted to send to
the local LU allocation requests carrying a user ID and either a password or an
already-verified indication. Also allows the program allocating a conversation to
specify that the allocation request carry the user ID received on the request that
started the program, together with an already-verified indication.

VTAM support for this option set is provided by the SECACPT operand on the
VTAM APPL statement. RACF support for this option set is provided by the
CONVSEC field in the SESSION segment of the RACF APPCLU profile.
APPC/MVS support for this option set is provided in its TP attach processing, which
uses RACF services to verify the user ID and password on allocation requests it
receives. Support for this option set is also provided in the ATBALC2, ATBALLC,
and CMALLC communications calls.

Program Supplied User ID and Password (213)
Allows the program allocating a conversation to supply the user ID and password to
be sent on the allocation request. Support for this option set is provided in the
ATBALC2 and ATBALLC communications calls.

Support for SNA LU 6.2 Verbs and Option Sets

Appendix D. Support for SNA LU 6.2 Verbs and Option Sets D-3

User ID Authorization (214)
Allows a program or operator to designate the user IDs that are authorized access
to specific resources of the LU, such as transaction programs.

RACF support for this option set is provided by its general scheme of resource
access control and the APPCTP general resource class. APPC/MVS support for this
option set is provided in its TP attach processing, which creates a RACF security
environment for the TP.

Profile Verification and Authorization (215)
Allows a program or operator to designate the profiles that the local LU uses to
verify a profile carried on allocation requests it receives, and to designate the
profiles that are authorized access to specific resources of the LU, such as
transaction programs.

Support for this option set is provided in TP attach processing, which uses the
profile field received on an allocation request as the RACF groupid when creating
the security environment for the TP.

Origin LU Authorization (216)
APPC/MVS and RACF allow a security administrator to specify the user IDs and
remote LUs that are authorized access to specific resources of a local LU. To
implement origin LU authorization, you must include the APPCPORT class among
the general resource classes for which conditional access lists can exist and modify
RACF’s PERMIT command processing. For more information about using RACF to
set up origin LU authorization, see z/OS SecureWay Security Server RACF Security
Administrator’s Guide.

Profile Passthrough (217)
Allows the program allocating a conversation to specify that the allocation request
carry the profile received on the request that started the program. Support for this
option set is provided in the ATBALC2, ATBALLC, and CMALLC communications
calls.

Program-Supplied Profile (218)
Allows the program allocating a conversation to specify the profile to be sent on the
allocation request. Support for this option set is provided in the ATBALC2 and
ATBALLC communications calls.

Receive Persistent Verification (220)
Allows a program or an operator to designate the remote LUs from which the local
LU will accept consecutive allocation requests that, once verified, remain verified for
specific user IDs.

Support for this option set is provided by APPC/MVS, ACF/VTAM (release 3.4 or
later), and RACF (release 1.9.2 or later). VTAM support for this option set is
provided by keyword values of the SECACPT operand on the VTAM APPL
statement. RACF support for this option set is provided by keyword values of the
CONVSEC field in the SESSION segment of the RACF APPCLU profile.
APPC/MVS support for this option set is provided in its TP attach processing, which
uses RACF services to inspect and maintain the LU’s SIGNED_ON_FROM list.

Support for SNA LU 6.2 Verbs and Option Sets

D-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Receive SIGNON/Change Password (222)
Allows a remote program or LU to a sign a user on to the local LU or change the
user’s password, or both. If option set 220 is in use, subsequent attaches for this
user can flow as “signed on.” Support for this option set is provided in TP attach
processing and a special TP for servicing these requests.

Accounting (243)
This option set allows an LU to generate and send both a logical-unit-of-work
(LUW) identifier and a conversation correlator (CC) to the remote LU. APPC/MVS
supports this option set only for protected conversations.

Long Locks (244)
This option set allows a program to perform the prepare-to-receive function and
request confirmation, and resume processing when information, such as data or
conversation status, is received from the remote program following an affirmative
reply. Support for this option set is provided in the ATBPTR communications call.

Test for Request-to-Send Received (245)
This option set allows a program to test whether a request-to-send notification has
been received on a conversation. Support for this option set is provided in the
CMTRTS communications call.

Vote Read-Only Response to a Sync Point Operation (249)
This option set improves performance of sync point operations by allowing the local
LU to vote read-only when none of the protected resources in its part of the
distributed transaction have been changed. This option set includes the
VOTE_READ_ONLY_PERMITTED parameter of the ATBSSO4 call, and affects the
return code to the SRRCMIT or SRRBACK verb.

Extract Transaction and Conversation Identification Information (251)
This option set allows the TP to retrieve the information identifying the transaction
and the conversations it is using. This option set relates to the Get_TP_Properties
service (for the logical unit of work identifier), and the Get_TP_Attributes service (for
the conversation correlator). APPC/MVS supports this option set only for protected
conversations.

CHANGE_SESSION_LIMIT Verb (501)
This option set allows a program or an operator at the source LU to request a
change in the (LU,mode) session limit from one nonzero value to another, or a
change in the minimum number of contention-winner sessions for the source LU or
target LU.

VTAM (release 3.4 or later) provides a MODIFY CNOS operator command which
may be used to change the session limits for LUs operated by APPC/MVS.

Session-Level Mandatory Cryptography (611)
This option set allows a program or an operator to specify that session-level
mandatory cryptography is to be used on sessions within an (LU,mode) group.

Support for this option set is provided in VTAM (release 3.4 or later). VTAM support
for this option set is provided by the ENCR parameter of the MODEENT macro.

Support for SNA LU 6.2 Verbs and Option Sets

Appendix D. Support for SNA LU 6.2 Verbs and Option Sets D-5

D-6 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Appendix E. Previous Versions of APPC/MVS Callable
Services

This section describes previous APPC/MVS TP conversation calls that have been
replaced by newer versions. The newer versions are documented in “Chapter 8.
APPC/MVS TP Conversation Callable Services” on page 8-1. To determine the most
recent version available on the system, use the Version service described in
“Version_Service” on page 9-31. The most recent version of each service is the
recommended programming interface.

ATBALLC - Allocate (For MVS/ESA 4.2 and 4.2.2)
Equivalent to:
v LU 6.2 (MC_)Allocate
v CPI Initialize_Conv (CMINIT) and Allocate (CMALLC)

This section describes the Allocate (ATBALLC) TP callable service provided with
MVS/ESA Version 4 Release 2 and MVS/ESA Version 4 Release 2.2. The Allocate
service was enhanced for MVS/ESA Version 4 Release 3, and renamed ATBALC2
(see “ATBALC2 - Allocate (For MVS/ESA 4.3 through OS/390 Release 7)” on
page E-10). The Allocate service was also enhanced for OS/390 Version 2 Release
8, and renamed ATBALC5 (see “Allocate” on page 8-1). The ATBALLC and
ATBALC2 calls remain valid, but do not contain the enhancements included in
ATBALC5.

Note: The ATBALC5 call is the recommended programming interface for this
service.

Allocates a session between the local LU and a partner LU, and on that session
allocates a basic or mapped conversation between the local program and a partner
program. A conversation ID is assigned to the conversation. Call this service before
other calls that refer to the conversation.

If the program that issues the allocate call was not started by APPC/MVS in
response to an inbound allocate call, and is not associated with an alternative
transaction scheduler, the outbound allocate call and ensuing conversation flow
through the base LU for the APPC/MVS transaction scheduler. If, in such a case,
there is no base LU defined for the APPC/MVS transaction scheduler, APPC/MVS
uses the system base LU. If there is no system base LU, APPC/MVS rejects the
allocate request. For more information about base LUs and their definition, see
z/OS MVS Planning: APPC/MVS Management.

Requirements

Authorization: Supervisor state or problem state, any PSW key, with the
following exceptions:

v When the TP_name specified is an SNA TP name
beginning with X'06', the caller must run either in
supervisor state, or with PSW key 0-7.

v When the TP_id specified is a value other than binary
zeros, the caller must run either in supervisor state, or
with PSW key 0-7.

© Copyright IBM Corp. 1991, 2001 E-1

Dispatchable unit mode: Task or SRB mode, with the following exception: task mode
only for callers that issue Allocate for a conversation with a
synchronization level of Syncpt.

Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
Conversation_type

Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Conversation_type specifies the type of conversation on which the service is
invoked.

Valid values for this parameter are:

Value Meaning

0 Basic_conversation

Specifies that in this conversation, the TPs will format their data into
separate records, with record length and data specified, before sending
it.

1 Mapped_conversation

Specifies that in this conversation, the TPs will rely on APPC to format
the data that the TPs send.

CALL ATBALLC(
Conversation_type,
Sym_dest_name,
Partner_LU_name,
Mode_name,
TP_name_length,
TP_name,
Return_control,
Sync_level,
Security_type,
User_ID,
Password,
Profile,
User_Token,
Conversation_ID,
Notify_type,
TP_ID,
Return_code

);

Figure E-1. ATBALLC - LU 6.2 Allocate

ATBALLC - Allocate (For MVS/ESA 4.2 and 4.2.2)

E-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Sym_dest_name
Supplied parameter
v Type: Character string
v Char Set: 01134
v Length: 8 bytes

Specifies a symbolic name representing the partner LU, the partner TP_name,
and the mode name for the session on which the conversation is to be carried.
The symbolic destination name must match that of an entry in the side
information data set. The appropriate entry in the side information is retrieved
and used to initialize the characteristics for the conversation.

If you specify a symbolic destination name, the partner LU name, mode name,
and TP name are obtained from the side information. If you also specify values
for the Partner_LU_name, Mode_name, or TP_name parameters on the
Allocate service, these values override any obtained from the side information.

The symbolic destination name in this field can be from 1 to 8 characters long,
with characters from character set 01134. If the symbolic destination name is
shorter than eight characters, it must be left-justified in the variable field, and
padded on the right with blanks. To not specify a symbolic destination name, set
the sym_dest_name parameter value to 8 blanks and provide values for the
Partner_LU_name, Mode_name, and TP_name parameters.

Partner_LU_name
Supplied parameter
v Type: Character string
v Char Set: Type A
v Length: 17 bytes (must be padded with blanks if less than 17 bytes)

Partner_LU_name specifies the name of the LU at which the partner program is
located.

The Partner_LU_name is any name by which the local LU knows the partner
LU for the purposes of allocating a conversation. The local LU transforms this
locally known LU name to an LU name used by the network.

The Partner_LU_name can be one of the following:

v LU name only (1-8 byte Type A character string).

This string represents the network LU name, which, if unique within the
network and interconnected networks, is sufficient for most TP
communications.

IBM recommends, however, that you specify either a symbolic destination
name (in the Sym_dest_name parameter), or the network-qualified LU name,
if known. While the network LU name might be unique currently, it might not
remain so if the installation increases the number of networks in use.
Specifying a symbolic destination name or network-qualified LU name can
minimize the need for future network definitions and program changes.

v A VTAM generic resource name.

If the partner LU is a member of a generic resource group, you may specify
the 1- to 8-byte generic resource name of the group.

v Combined network_ID and network LU name (two 1-8 byte Type A character
strings, concatenated by a period: network_ID.network_LU_name).

This format is known as a network-qualified LU name ; each LU in the
network and all interconnected networks can be uniquely identified by its

ATBALLC - Allocate (For MVS/ESA 4.2 and 4.2.2)

Appendix E. Previous Versions of APPC/MVS Callable Services E-3

network-qualified LU name. The network-LU-name portion may be a VTAM
generic resource name, or a specific LU name. If the local LU is not enabled
to support network-qualified names, APPC/MVS passes only the
network-LU-name portion to VTAM, which might cause an error if the network
LU name is not unique across networks.

v A value of 17 blanks:

If you specify a symbolic destination name in Sym_dest_name parameter, set
Partner_LU_name to blanks to use the partner LU name from the side
information.

If you do not specify a symbolic destination name, then use a blank
Partner_LU_name to indicate that the partner program is located at the same
LU as the local program (LU=OWN). If the local LU is defined as a member
of a VTAM generic resource group, APPC/MVS uses the generic resource
name for Partner_LU_name.

Mode_name
Supplied parameter
v Type: Character string
v Char Set: Type A
v Length: 8 bytes (must be padded with blanks if less than 8 bytes)

Mode_name specifies the mode name designating the network properties for
the session to be allocated for the conversation. The network properties include,
for example, the class of service to be used.

The mode name value of “SNASVCMG” is reserved for use by APPC/MVS. If a
mode name of “SNASVCMG” is specified on the Allocate service, the request is
rejected with a return code of parameter_error.

If you specify a symbolic destination name in the sym_dest_name parameter,
set mode_name to blanks to obtain the mode_name from the side information.

If you do not specify a sym_dest_name and do not specify a mode name,
APPC/MVS uses the default mode name “ATB#MODE”.

TP_name_length
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

TP_name_length specifies the length of data contained in the TP_name
parameter.

If you specify a symbolic destination name in the sym_dest_name parameter,
set TP_name_length to 0 to use the partner TP name from the side information.

TP_name
Supplied parameter
v Type: Character string
v Char Set: 006409 (Type A if the partner TP is protected by RACF)
v Length: 1-64 bytes

TP_name specifies the name of the partner program to be connected at the
other end of the conversation.

ATBALLC - Allocate (For MVS/ESA 4.2 and 4.2.2)

E-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

If you specify a symbolic destination name in the sym_dest_name parameter
and set the TP_name_length parameter to zero, the TP name is obtained from
the side information file.

TP_name can specify the name of any SNA service transaction program except
for one whose first character is X'06'; see the authorization requirements in
“Requirements” on page E-1 for more information about this exception. The
names of SNA service transaction programs can contain blank characters. For a
list of SNA service transaction programs, see SNA Transaction Programmer’s
Reference Manual for LU 6.2.

If the partner TP is to be protected by a RACF security profile in the APPCTP
class, the TP_name must consist of Type A characters only.

Return_control
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_control specifies when the local LU is to return control to the local
program, in relation to the allocation of a session for the conversation.

Valid values for this parameter are:

Value Meaning

0 When_session_allocated

Specifies to allocate a session for the conversation before returning
control to the program. An error in allocating a session is reported on
this call.

1 Immediate

Specifies to allocate a session for the conversation if a session is
immediately available, and return control to the program with a return
code indicating whether a session is allocated. An error in allocating a
session that is immediately available is reported on this call.

100 When_conwinner_allocated

Specifies to allocate a session in which the local LU is the contention
winner, before returning control to the program. As contention winner,
the LU avoids having to compete with the partner LU to establish the
session, thus potentially saving network traffic. An error in allocating a
contention winner session for the conversation is reported on this call.

Sync_level
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Sync_level specifies the synchronization level that the local and partner
programs can use on this conversation.

Valid values for this parameter are:

Value Meaning

0 None

ATBALLC - Allocate (For MVS/ESA 4.2 and 4.2.2)

Appendix E. Previous Versions of APPC/MVS Callable Services E-5

Specifies that the programs will not perform confirmation processing on
this conversation. The programs will not call any services and will not
recognize any returned parameters relating to confirmation.

1 Confirm

Specifies that the programs can perform confirmation processing on this
conversation. The programs can call services and will recognize
returned parameters relating to confirmation.

2 Syncpt

Specifies that the programs can perform sync point processing on this
conversation. The programs can call services and will recognize
returned parameters relating to sync point processing.

Security_type
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Security_type specifies the type of access security information that the partner
LU uses to verify the identity of the end-user and validate access to the partner
program and its resources.

Valid values for this parameter are:

Value Meaning

100 Security_none

Specifies to omit access security information on this allocation request.

101 Security_same

Specifies to use the same user ID that is associated with the current
program the Allocate service is issued from. The password (if present)
is not used; instead, the user ID is indicated as being already verified. If
the allocation request that initiated execution of the local program
contained no security information, security information is omitted on this
allocation request. APPC can retrieve the security information from a
number of different places. If the user is authorized and the user
specifies a valid User_Token parameter, APPC will use this to obtain
the appropriate security information (a user ID and possible profile
name). If this is not specified, APPC will send the user ID associated
with the current application context environment, if this is available.
Otherwise, APPC will send the user ID and possible profile name that is
associated with the current executing task, or if unavailable, from the
current address space.

102 Security_pgm

Specifies to use the access security information that the local program
provides on the call. The local program provides the information by
means of the User_ID, Password, and Profile parameters. These values
are passed exactly as specified, without folding to uppercase.

Normally, User_ID and Password are required parameters for this
Security_type. However, the User_ID parameter can be specified
without the Password parameter if, on the local system, the user ID of
the issuing address space has been granted surrogate authorization for

ATBALLC - Allocate (For MVS/ESA 4.2 and 4.2.2)

E-6 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

|
|
|
|

the specified User_ID. In RACF terms, this requires READ access to
the ATBALLC.userid profile (or a generic profile) in the SURROGAT
class, where userid is the value specified on the User_ID parameter. If
surrogate authorization is granted, the user ID specified on the call will
be sent and will be indicated as being already verified. For general
information on surrogate user IDs, see z/OS SecureWay Security
Server RACF Security Administrator’s Guide. For specific information
about ATBALLC.userid profiles, see z/OS MVS Planning: APPC/MVS
Management.

Note: If the surrogate authorization is used, the specified User_ID must
be a valid MVS user ID. For example, it cannot be longer than 8
characters.

User_ID
Supplied parameter
v Type: Character string
v Char Set: No restriction (Type A if APPC/MVS manages the partner LU)
v Length: 10 bytes

Specifies the user ID. The partner LU uses this value and the password to
verify the identity of the end user that initiated the allocation request. The
partner LU may use this value for auditing and accounting purposes, and,
together with the security profile (if present), to determine which partner
programs the local program can access.

When the partner LU is on MVS with RACF protection, the user ID must be 1-8
alphanumeric characters.

This parameter is significant only when the Security_type parameter contains a
value of Pgm. Otherwise, this parameter has no meaning and is ignored.

Password
Supplied parameter
v Type: Character string
v Char Set: No restriction (Type A if APPC/MVS manages the partner LU)
v Length: 10 bytes (must be left-justified and padded with blanks if less than 10

bytes)

Specifies the password. The partner LU uses this value and the user ID to
verify the identity of the end user that made the allocation request. When the
partner LU is on MVS with RACF protection, the password must be 1-8
alphanumeric characters padded with blanks.

This parameter is significant only when the Security_type parameter contains a
value of Pgm. Otherwise, this parameter has no meaning and is ignored.

Profile
Supplied parameter
v Type: Character string
v Char Set: No restriction (Type A if APPC/MVS manages the partner LU)
v Length: 10 bytes

Profile specifies additional security information that may be used to determine
what partner programs the local program may access, and which resources the
local program may access. When the partner LU is on MVS with RACF

ATBALLC - Allocate (For MVS/ESA 4.2 and 4.2.2)

Appendix E. Previous Versions of APPC/MVS Callable Services E-7

|
|
|
|
|
|
|
|
|

|
|
|

protection, APPC/MVS treats the profile name as a RACF group name for
verifying access to partner programs. The profile name must be 1-8
alphanumeric characters.

This parameter is significant only when the Security_type parameter contains a
value of Pgm. Otherwise, this parameter has no meaning and is ignored.

User_Token
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 1-255 bytes

User_Token specifies the RACF UTOKEN which identifies the user requesting
the Allocate. Only programs running in supervisor state or PSW key 0-7 can
specify a User_Token. To not specify a User_Token, pass a field whose first
byte contains a hexadecimal zero (X'00').

If a RACF UTOKEN is supplied, APPC/MVS uses it to obtain the appropriate
security information only when you specify a Security_Type of Security_Same.
In that case, APPC/MVS obtains the user ID and RACF group name from the
UTOKEN. This parameter will not be consulted if Security_Type is
Security_None or Security_Pgm.

Conversation_id
Returned parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

Notify_type
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. Programs can request asynchronous processing,
which returns control to the program immediately and later notifies the program
by ECB when the service is complete. The possible types are:

v None

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.

When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the

ATBALLC - Allocate (For MVS/ESA 4.2 and 4.2.2)

E-8 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during asynchronous
processing, and the specified ECB is posted when all returned parameters
are set. The completion code field in the ECB contains the return code for
the service.

Note: As of MVS/ESA SP 4.2.2, unauthorized callers can specify a Notify_type
of ECB on calls to Allocate. With MVS/ESA SP 4.2, unauthorized callers
cannot specify a Notify_type of ECB.

TP_ID
Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Allows authorized TPs to designate the transaction program instance with which
this conversation should be associated. (See “Requirements” on page E-1 for
more information about specific authorization requirements.) Unauthorized TPs
must set this parameter to binary zeros, which causes the TP_ID assignment to
occur automatically and transparently to the transaction program.

Advanced TPs that run in supervisor state or PSW key 0-7 can select the
TP_ID assigned. See the Define_Local_TP callable service description in z/OS
MVS System Messages, Vol 3 (ASB-BPX) for information on how to create a
new TP_ID.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. In
cases where an error code is returned, the program should not examine any
other returned variable associated with the call because nothing is placed in the
variables.

An allocation error resulting from the local LU’s failure to obtain a session for
the conversation is reported on this call. An allocation error resulting from the
partner LU’s rejection of the allocation request is reported on a subsequent call.

If the Return_control parameter contained a value of When_session_allocated
or When_conwinner_allocated, possible values of Return_code are:

Value Meaning
0 OK
1 Allocate_failure_no_retry
2 Allocate_failure_retry
7 Sync_lvl_not_supported_lu
19 Parameter_error
20 Product_specific_error
24 Program_parameter_check
25 Program_State_Check

If the Return_control parameter contained a value of Immediate, possible values
of Return_code are:

ATBALLC - Allocate (For MVS/ESA 4.2 and 4.2.2)

Appendix E. Previous Versions of APPC/MVS Callable Services E-9

Value Meaning
0 OK
7 Sync_lvl_not_supported_lu
19 Parameter_error
20 Product_specific_error
24 Program_parameter_check
25 Program_State_Check
28 Unsuccessful

For more detailed information about these return codes, refer to “Appendix B.
Explanations of Return Codes for CPI Communications Services” on page B-1.

Restrictions
Transaction programs that call the Allocate service while in task mode should not
have any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the section on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

ATBALC2 - Allocate (For MVS/ESA 4.3 through OS/390 Release 7)
Equivalent to:
v LU 6.2 (MC_)Allocate
v CPI Initialize_Conv (CMINIT) and Allocate (CMALLC)

This section describes the Allocate (ATBALC2) TP callable service provided with
MVS/ESA Version 4 Release 3 The Allocate service was enhanced for OS/390
Release 8, and renamed ATBALC5 (see “Allocate” on page 8-1). The ATBALC2 call
remains valid, but does not contain the enhancements included in ATBALC5.

Note: The ATBALC5 call is the recommended programming interface for this
service.

Allocates a session between the local LU and a partner LU, and on that session
allocates a basic or mapped conversation between the local program and a partner
program. A conversation ID is assigned to the conversation. Call this service before
other calls that refer to the conversation.

If the program that issues the allocate call was not started by APPC/MVS in
response to an inbound allocate call, and is not associated with an alternative
transaction scheduler, the outbound allocate call and ensuing conversation flow
through the base LU for the APPC/MVS transaction scheduler. If, in such a case,
there is no base LU defined for the APPC/MVS transaction scheduler, APPC/MVS
uses the system base LU. If there is no system base LU, APPC/MVS rejects the
allocate request. For more information about base LUs and their definition, see
z/OS MVS Planning: APPC/MVS Management.

ATBALLC - Allocate (For MVS/ESA 4.2 and 4.2.2)

E-10 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Requirements

Authorization: Supervisor state or problem state, any PSW key, with the
following exceptions:

v When the TP_name specified is an SNA TP name
beginning with X'06', the caller must run either in
supervisor state, or with PSW key 0-7.

v When the TP_id specified is a value other than binary
zeros, the caller must run either in supervisor state, or
with PSW key 0-7.

Dispatchable unit mode: Task or SRB mode, with the following exception: task mode
only for callers that issue Allocate for a conversation with a
synchronization level of Syncpt.

Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
Conversation_type

Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Conversation_type specifies the type of conversation on which the service is
invoked.

Valid values for this parameter are:

CALL ATBALC2(
Conversation_type,
Sym_dest_name,
Partner_LU_name,
Mode_name,
TP_name_length,
TP_name,
Return_control,
Sync_level,
Security_type,
User_ID,
Password,
Profile,
User_Token,
Conversation_ID,
Notify_type,
TP_ID,
Local_LU_name,
Return_code

);

Figure E-2. ATBALC2 - LU 6.2 Allocate

ATBALC2 - Allocate (For MVS/ESA 4.3 through OS/390 Release 7)

Appendix E. Previous Versions of APPC/MVS Callable Services E-11

Value Meaning

0 Basic_conversation

Specifies that in this conversation, the TPs will format their data into
separate records, with record length and data specified, before sending
it.

1 Mapped_conversation

Specifies that in this conversation, the TPs will rely on APPC to format
the data that the TPs send.

Sym_dest_name
Supplied parameter
v Type: Character string
v Char Set: 01134
v Length: 8 bytes

Specifies a symbolic name representing the partner LU, the partner TP_name,
and the mode name for the session on which the conversation is to be carried.
The symbolic destination name must match that of an entry in the side
information data set. The appropriate entry in the side information is retrieved
and used to initialize the characteristics for the conversation.

If you specify a symbolic destination name, the partner LU name, mode name,
and TP name are obtained from the side information. If you also specify values
for the Partner_LU_name, Mode_name, or TP_name parameters on the
Allocate service, these values override any obtained from the side information.

The symbolic destination name in this field can be from 1 to 8 characters long,
with characters from character set 01134. If the symbolic destination name is
shorter than eight characters, it must be left-justified in the variable field, and
padded on the right with blanks. To not specify a symbolic destination name, set
the sym_dest_name parameter value to 8 blanks and provide values for the
Partner_LU_name, Mode_name, and TP_name parameters.

Partner_LU_name
Supplied parameter
v Type: Character string
v Char Set: Type A
v Length: 17 bytes (must be padded with blanks if less than 17 bytes)

Partner_LU_name specifies the name of the LU at which the partner program is
located.

The Partner_LU_name is any name by which the local LU knows the partner
LU for the purposes of allocating a conversation. The local LU transforms this
locally known LU name to an LU name used by the network.

The Partner_LU_name can be one of the following:

v LU name only (1-8 byte Type A character string).

This string represents the network LU name, which, if unique within the
network and interconnected networks, is sufficient for most TP
communications.

IBM recommends, however, that you specify either a symbolic destination
name (in the Sym_dest_name parameter), or the network-qualified LU name,
if known. While the network LU name might be unique currently, it might not

ATBALC2 - Allocate (For MVS/ESA 4.3 through OS/390 Release 7)

E-12 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

remain so if the installation increases the number of networks in use.
Specifying a symbolic destination name or network-qualified LU name can
minimize the need for future network definitions and program changes.

v A VTAM generic resource name.

If the partner LU is a member of a generic resource group, you may specify
the 1- to 8-byte generic resource name of the group.

v Combined network_ID and network LU name (two 1-8 byte Type A character
strings, concatenated by a period: network_ID.network_LU_name).

This format is known as a network-qualified LU name ; each LU in the
network and all interconnected networks can be uniquely identified by its
network-qualified LU name. The network-LU-name portion may be a VTAM
generic resource name, or a specific LU name. If the local LU is not enabled
to support network-qualified names, APPC/MVS passes only the
network-LU-name portion to VTAM, which might cause an error if the network
LU name is not unique across networks.

v A value of 17 blanks:

If you specify a symbolic destination name in Sym_dest_name parameter, set
Partner_LU_name to blanks to use the partner LU name from the side
information.

If you do not specify a symbolic destination name, then use a blank
Partner_LU_name to indicate that the partner program is located at the same
LU as the local program (LU=OWN). If the local LU is defined as a member
of a VTAM generic resource group, APPC/MVS uses the generic resource
name for Partner_LU_name.

Mode_name
Supplied parameter
v Type: Character string
v Char Set: Type A
v Length: 8 bytes (must be padded with blanks if less than 8 bytes)

Mode_name specifies the mode name designating the network properties for
the session to be allocated for the conversation. The network properties include,
for example, the class of service to be used.

The mode name value of “SNASVCMG” is reserved for use by APPC/MVS. If a
mode name of “SNASVCMG” is specified on the Allocate service, the request is
rejected with a return code of parameter_error.

If you specify a symbolic destination name in the sym_dest_name parameter,
set mode_name to blanks to obtain the mode_name from the side information.

If you do not specify a sym_dest_name and do not specify a mode name,
APPC/MVS uses the default mode name “ATB#MODE”.

TP_name_length
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

TP_name_length specifies the length of data contained in the TP_name
parameter.

If you specify a symbolic destination name in the sym_dest_name parameter,
set TP_name_length to 0 to use the partner TP name from the side information.

ATBALC2 - Allocate (For MVS/ESA 4.3 through OS/390 Release 7)

Appendix E. Previous Versions of APPC/MVS Callable Services E-13

TP_name
Supplied parameter
v Type: Character string
v Char Set: 006409 (Type A if the partner TP is protected by RACF)
v Length: 1-64 bytes

TP_name specifies the name of the partner program to be connected at the
other end of the conversation.

If you specify a symbolic destination name in the sym_dest_name parameter
and set the TP_name_length parameter to zero, the TP name is obtained from
the side information file.

TP_name can specify the name of any SNA service transaction program except
for one whose first character is X'06'; see the authorization requirements in
“Requirements” on page E-11 for more information about this exception. The
names of SNA service transaction programs can contain blank characters. For a
list of SNA service transaction programs, see SNA Transaction Programmer’s
Reference Manual for LU 6.2.

If the partner TP is to be protected by a RACF security profile in the APPCTP
class, the TP_name must consist of Type A characters only.

Return_control
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_control specifies when the local LU is to return control to the local
program, in relation to the allocation of a session for the conversation.

Valid values for this parameter are:

Value Meaning

0 When_session_allocated

Specifies to allocate a session for the conversation before returning
control to the program. An error in allocating a session is reported on
this call.

1 Immediate

Specifies to allocate a session for the conversation if a session is
immediately available, and return control to the program with a return
code indicating whether a session is allocated. An error in allocating a
session that is immediately available is reported on this call.

100 When_conwinner_allocated

Specifies to allocate a session in which the local LU is the contention
winner, before returning control to the program. As contention winner,
the LU avoids having to compete with the partner LU to establish the
session, thus potentially saving network traffic. An error in allocating a
contention winner session for the conversation is reported on this call.

Sync_level
Supplied parameter
v Type: Integer
v Char Set: N/A

ATBALC2 - Allocate (For MVS/ESA 4.3 through OS/390 Release 7)

E-14 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v Length: 32 bits

Sync_level specifies the synchronization level that the local and partner
programs can use on this conversation.

Valid values for this parameter are:

Value Meaning

0 None

Specifies that the programs will not perform confirmation processing on
this conversation. The programs will not call any services and will not
recognize any returned parameters relating to confirmation.

1 Confirm

Specifies that the programs can perform confirmation processing on this
conversation. The programs can call services and will recognize
returned parameters relating to confirmation.

2 Syncpt

Specifies that the programs can perform sync point processing on this
conversation. The programs can call services and will recognize
returned parameters relating to sync point processing.

Security_type
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Security_type specifies the type of access security information that the partner
LU uses to verify the identity of the end-user and validate access to the partner
program and its resources.

Valid values for this parameter are:

Value Meaning

100 Security_none

Specifies to omit access security information on this allocation request.

101 Security_same

Specifies to use the same user ID that is associated with the current
program the Allocate service is issued from. The password (if present)
is not used; instead, the user ID is indicated as being already verified. If
the allocation request that initiated execution of the local program
contained no security information, security information is omitted on this
allocation request. APPC can retrieve the security information from a
number of different places. If the user is authorized and the user
specifies a valid User_Token parameter, APPC will use this to obtain
the appropriate security information (a user ID and possible profile
name). If this is not specified, APPC will send the user ID associated
with the current application context environment, if this is available.
Otherwise, APPC will send the user ID and possible profile name that is
associated with the current executing task, or if unavailable, from the
current address space.

102 Security_pgm

ATBALC2 - Allocate (For MVS/ESA 4.3 through OS/390 Release 7)

Appendix E. Previous Versions of APPC/MVS Callable Services E-15

Specifies to use the access security information that the local program
provides on the call. The local program provides the information by
means of the User_ID, Password, and Profile parameters. These values
are passed exactly as specified, without folding to uppercase.

Normally, User_ID and Password are required parameters for this
Security_type. However, the User_ID parameter can be specified
without the Password parameter if, on the local system, the user ID of
the issuing address space has been granted surrogate authorization for
the specified User_ID. In RACF terms, this requires READ access to
the ATBALLC.userid profile (or a generic profile) in the SURROGAT
class, where userid is the value specified on the User_ID parameter. If
surrogate authorization is granted, the user ID specified on the call will
be sent and will be indicated as being already verified. For general
information on surrogate user IDs, see z/OS SecureWay Security
Server RACF Security Administrator’s Guide. For specific information
about ATBALLC.userid profiles, see z/OS MVS Planning: APPC/MVS
Management.

Note: If the surrogate authorization is used, the specified User_ID must
be a valid MVS user ID. For example, it cannot be longer than 8
characters.

User_ID
Supplied parameter
v Type: Character string
v Char Set: No restriction (Type A if APPC/MVS manages the partner LU)
v Length: 10 bytes

Specifies the user ID. The partner LU uses this value and the password to
verify the identity of the end user that initiated the allocation request. The
partner LU may use this value for auditing and accounting purposes, and,
together with the security profile (if present), to determine which partner
programs the local program can access.

When the partner LU is on MVS with RACF protection, the user ID must be 1-8
alphanumeric characters.

This parameter is significant only when the Security_type parameter contains a
value of Pgm. Otherwise, this parameter has no meaning and is ignored.

Password
Supplied parameter
v Type: Character string
v Char Set: No restriction (Type A if APPC/MVS manages the partner LU)
v Length: 10 bytes (must be left-justified and padded with blanks if less than 10

bytes)

Specifies the password. The partner LU uses this value and the user ID to
verify the identity of the end user that made the allocation request. When the
partner LU is on MVS with RACF protection, the password must be 1-8
alphanumeric characters padded with blanks.

This parameter is significant only when the Security_type parameter contains a
value of Pgm. Otherwise, this parameter has no meaning and is ignored.

Profile
Supplied parameter

ATBALC2 - Allocate (For MVS/ESA 4.3 through OS/390 Release 7)

E-16 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

v Type: Character string
v Char Set: No restriction (Type A if APPC/MVS manages the partner LU)
v Length: 10 bytes

Profile specifies additional security information that may be used to determine
what partner programs the local program may access, and which resources the
local program may access. When the partner LU is on MVS with RACF
protection, APPC/MVS treats the profile name as a RACF group name for
verifying access to partner programs. The profile name must be 1-8
alphanumeric characters.

This parameter is significant only when the Security_type parameter contains a
value of Pgm. Otherwise, this parameter has no meaning and is ignored.

User_Token
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 1-255 bytes

User_Token specifies the RACF UTOKEN which identifies the user requesting
the Allocate. Only programs running in supervisor state or PSW key 0-7 can
specify a User_Token. To not specify a User_Token, pass a field whose first
byte contains a hexadecimal zero (X'00').

If a RACF UTOKEN is supplied, APPC/MVS uses it to obtain the appropriate
security information only when you specify a Security_Type of Security_Same.
In that case, APPC/MVS obtains the user ID and RACF group name from the
UTOKEN. This parameter will not be consulted if Security_Type is
Security_None or Security_Pgm.

Conversation_id
Returned parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Conversation_id, sometimes called the resource identifier, identifies a
conversation to the system.

Notify_type
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. Programs can request asynchronous processing,
which returns control to the program immediately and later notifies the program
by ECB when the service is complete. The possible types are:

v None

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB

ATBALC2 - Allocate (For MVS/ESA 4.3 through OS/390 Release 7)

Appendix E. Previous Versions of APPC/MVS Callable Services E-17

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.

When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the
return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during asynchronous
processing, and the specified ECB is posted when all returned parameters
are set. The completion code field in the ECB contains the return code for
the service.

Note: As of MVS/ESA SP 4.2.2, unauthorized callers can specify a Notify_type
of ECB on calls to Allocate. With MVS/ESA SP 4.2, unauthorized callers
cannot specify a Notify_type of ECB.

TP_ID
Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Allows authorized TPs to designate the transaction program instance with which
this conversation should be associated. (See “Requirements” on page E-11 for
more information about specific authorization requirements.) Unauthorized TPs
must set this parameter to binary zeros, which causes the TP_ID assignment to
occur automatically and transparently to the transaction program.

Advanced TPs that run in supervisor state or PSW key 0-7 can select the
TP_ID assigned. See the Define_Local_TP callable service description in z/OS
MVS System Messages, Vol 3 (ASB-BPX) for information on how to create a
new TP_ID.

Local_LU_name
Supplied parameter
v Type: Character string
v Char Set: Type A
v Length: 8 bytes

Local_LU_name specifies the name of the local LU from which the caller’s
allocate request is to originate. The ability to specify the local LU name allows
the caller to associate its outbound conversations with particular LUs. You
cannot specify a VTAM generic resource name for the local LU name.

The caller’s address space must have access to the named LU. Otherwise, a
parameter_error return code is returned. Use Table E-1 on page E-19 to
determine whether you can specify a particular local LU.

ATBALC2 - Allocate (For MVS/ESA 4.3 through OS/390 Release 7)

E-18 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table E-1. Local LUs for Which an Address Space Can Allocate

LU Specified

System Base
LU,

NOSCHED1

System Base
LU, ASCH1

NOSCHED LU ASCH LU Scheduler 2
LU

Address
Space Doing

Allocate

From an
Address

Space Not
Connected to
a Scheduler

OK OK OK NO2 NO2

From an
Address
Space

Connected to
ASCH

OK OK OK OK NO2

From an
Address
Space

Connected to
Scheduler 2

OK NO2 OK NO2 OK

From an
Address

Space Not
Connected to
a Scheduler
with Prohibit
Default LU
Specified 4

NO3 NO3 NO3 NO3 NO3

Notes:
1. Columns 1 and 2 are mutually exclusive.
2. The system returns a Parameter_error return code to the caller. If the specified LU is not defined, the system also

returns a Product_specific_error return code to the caller.
3. The system returns a Product_specific_error return code to the caller.
4. For information about how to prohibit the use of a default LU for an address space, see the description of the

Set_AS_Attributes service in z/OS MVS System Messages, Vol 3 (ASB-BPX).

If the caller sets local_LU_name to blanks, the system uses the following
hierarchy to select an LU for the conversation:

1. The LU associated with the transaction program

2. If no LU is associated with the TP, the system uses the base LU for the
transaction scheduler associated with the caller’s address space.

3. If no transaction scheduler is associated with this address space, the
system uses the system base LU, which is either:

v An LU defined with the NOSCHED and BASE parameters, or

v If a base NOSCHED LU is not defined, the LU defined as the base LU
for the APPC/MVS transaction scheduler.

4. If no system base LU is defined, the system rejects the Allocate call.

For more information about base LUs and their definitions, see z/OS MVS
Planning: APPC/MVS Management.

Table E-2 on page E-20 shows which LU is used by default.

ATBALC2 - Allocate (For MVS/ESA 4.3 through OS/390 Release 7)

Appendix E. Previous Versions of APPC/MVS Callable Services E-19

Table E-2. Default Local LUs Used If None Are Specified

Program Calling
Allocate Service

Base LUs exist

nosched ASCH Sched 2 nosched,
ASCH

nosched,
Sched 2

ASCH,
Sched 2

nosched,
ASCH,

Sched 2

From an Address
Space Not

Connected to a
Scheduler

nosched asch NO1 nosched nosched asch nosched

From an Address
Space Not

Connected to a
Scheduler but
with prohibit
default LU
specified

NO1 NO1 NO1 NO1 NO1 NO1 NO1

From an Address
Space Connected

to ASCH

N/A N/A N/A N/A N/A N/A N/A

From an Address
Space Connected

to ASCH and
with prohibit
default LU
specified

N/A N/A N/A N/A N/A N/A N/A

From an Address
Space Connected

to Scheduler 2

nosched NO1 Sched 2 nosched Sched 2 Sched 2 Sched 2

From an Address
Space Connected

to Scheduler 2
and with prohibit

default LU
specified

NO1 NO1 Sched 2 NO1 Sched 2 Sched 2 Sched 2

Notes:

1. A Product_Specific_Error return code is returned if no base LU exists.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. In
cases where an error code is returned, the program should not examine any
other returned variable associated with the call because nothing is placed in the
variables.

When APPC/MVS returns an error return code to Allocate, your TP:

v Can use the conversation ID returned on the Conversation_ID parameter as
input to the Error_Extract service (which returns detailed information about
error return codes)

ATBALC2 - Allocate (For MVS/ESA 4.3 through OS/390 Release 7)

E-20 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v Should not examine any other returned parameter associated with the call
because no values are placed in the parameters.

An allocation error resulting from the local LU’s failure to obtain a session for
the conversation is reported on this call. An allocation error resulting from the
partner LU’s rejection of the allocation request is reported on a subsequent call.

See “Return Codes” for descriptions of return codes that can be returned to a
caller of Allocate.

Return Codes
If the Return_control parameter contains a value of When_session_allocated or
When_conwinner_allocated, possible values of Return_code are:

Decimal Value Meaning
0 OK
1 Allocate_failure_no_retry
2 Allocate_failure_retry
7 Sync_lvl_not_supported_lu
19 Parameter_error
20 Product_specific_error
24 Program_parameter_check
25 Program_state_check

If the Return_control parameter contains a value of Immediate, possible values of
Return_code are:

Decimal Value Meaning
0 OK
7 Sync_lvl_not_supported_lu
19 Parameter_error
20 Product_specific_error
24 Program_parameter_check
25 Program_state_check
28 Unsuccessful

The following table describes all of the possible return codes for Allocate:

Table E-3. Return Codes for the Allocate Service

Return
Code

Value, Meaning, and Action

0 Value : OK

Meaning : The call completed successfully.

System Action : If the call specified a Notify_type of ECB, APPC/MVS posts
the ECB specified on the Notify_type parameter when APPC/MVS finishes
processing the call asynchronously.

Application Programmer Response : None required.

ATBALC2 - Allocate (For MVS/ESA 4.3 through OS/390 Release 7)

Appendix E. Previous Versions of APPC/MVS Callable Services E-21

Table E-3. Return Codes for the Allocate Service (continued)

Return
Code

Value, Meaning, and Action

1 Value : Allocate_failure_no_retry

Meaning : A TP submitted an allocate request. The request specified a value
on the Return_control parameter that was other than Immediate. One of the
following occurred:

v Virtual telecommunications access method (VTAM) could not establish a
session with the partner LU.

v APPC/MVS could not establish a conversation.

System Action : The system returns this return code to the caller of Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

If the conversation is not LU=LOCAL, see z/OS Communications Server:
SNA Programmer’s LU 6.2 Guide for a description of the sense codes
included in the message from Error_Extract. If the error persists, or if the
conversation is LU=LOCAL, verify that the name specified on the
Local_LU_name parameter is correct. If the name is correct, contact the
system programmer.

System Programmer Response : At the request of the application
programmer, ensure that the local LU is defined correctly in the VTAM
application (APPL) statement in SYS1.VTAMLST.

2 Value : Allocate_failure_retry

Meaning : A TP submitted an allocate request. The request specified a value
on the Return_control parameter that was other than Immediate. The system
cannot allocate the conversation because of a condition that might be
temporary.

System Action : The system returns this return code to the caller of Allocate.

Application Programmer Response : Retry the allocate request.

7 Value : Sync_lvl_not_supported_lu

Meaning : A TP submitted an Allocate request with a synchronization level
that is not supported by the partner LU.

System Action : The system returns this return code to the caller of the
Allocate call.

Application Programmer Response : Ensure that the partner LU supports
the receipt of conversations with a synchronization level of syncpt.

ATBALC2 - Allocate (For MVS/ESA 4.3 through OS/390 Release 7)

E-22 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Table E-3. Return Codes for the Allocate Service (continued)

Return
Code

Value, Meaning, and Action

19 Value : Parameter_error

Meaning : A local TP called an APPC service. A parameter specified on the
call is not valid. The error could be one of the following:
v The TP name is not 1 to 64 characters long.
v Either the SYMDEST name or the TP name length were not specified.
v SNASVCMG is specified as mode name.
v X'0E' or X'0F' was used as the first character of a TP name.
v X'06' was used as the first character of a TP name by a caller that was not

running either in supervisor state or with PSW key 0-7.
v An SNA service TP name is used with a mapped conversation verb.
v The partner LU name was not valid.
v The mode name was not valid.
v The local LU name specified is either undefined or not allowed; for

example, the TP might have specified a VTAM generic resource name,
which is valid only for partner LU names.

System Action : The system returns this return code to the caller of Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

20 Value : Product_specific_error

Meaning : The system found a product-specific error.

System Action : The system might write symptom records, which describe
the error, to the logrec data set.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format. If
necessary, see “Diagnosing Product-Specific Errors” on page 6-46 for more
information about product-specific errors.

24 Value : Program_parameter_check

Meaning : The local TP called an APPC service. One of the following errors
occurred in one or more parameters specified on the call:
v An unauthorized caller passed a non-zero TP_ID.
v For a Security_type of Security_pgm, both the user ID and password were

not specified.
v For a Security_type of Security_pgm, a user ID was specified with a blank

password, or a password was specified with a blank user ID.
v The SYMDEST name was not found in the side information.
v The specified TP_ID is not associated with the address space.
v An unauthorized caller specified a UTOKEN that was non-zero.
v The specified local LU does not support protected conversations

(conversations with a synchronization level of syncpt).

System Action : The system returns this return code to the caller of Allocate.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

ATBALC2 - Allocate (For MVS/ESA 4.3 through OS/390 Release 7)

Appendix E. Previous Versions of APPC/MVS Callable Services E-23

Table E-3. Return Codes for the Allocate Service (continued)

Return
Code

Value, Meaning, and Action

25 Value : Program_state_check

Meaning : For a conversation with sync_level set to SYNCPT, the
conversation’s context (unit of work) is in the Backout-Required condition.
New protected conversations cannot be allocated for a context in this
condition.

System Action : The conversation allocation request fails. A new conversation
is not allocated.

Application Programmer Response : Backout the current unit of recovery
associated with the transaction program’s context.

28 Value : Unsuccessful

Meaning : The request specified an allocate_type of Immediate. One of the
following occurred:

v APPC/MVS could not establish a session with the partner LU

v Virtual telecommunications access method (VTAM) could not establish a
conversation.

System Action: The system returns this return code to the caller of the
APPC service in error.

Application Programmer Response : See “Chapter 6. Diagnosing Problems
with APPC/MVS TPs” on page 6-1 for methods to use to diagnose the return
code. See “Error_Extract” on page 8-34 for the Error_Extract calling format.

For more detailed information about these return codes, refer to “Appendix B.
Explanations of Return Codes for CPI Communications Services” on page B-1.

Restrictions
Transaction programs that call the Allocate service while in task mode should not
have any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the section on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

ATBCMCTU - Cleanup_TP (Unauthorized, for MVS/ESA 4.2)
This section describes the Cleanup_TP (ATBCMCTU) advanced callable service
provided with MVS/ESA Version 4 Release 2. The Cleanup_TP service was
enhanced for MVS/ESA Version 4 Release 2.2, and renamed ATBCUC1 (see
“Cleanup_TP” on page 9-5). The ATBCMCTU call remains valid in MVS/ESA 4.2.2,
but does not contain the enhancements included in ATBCUC1. However, if this call
is issued against a TP that has active protected conversations, ATBCMCTU will
have the same effect on the protected conversations as ATBCUC1 does.

Note: The ATBCUC1 call is the recommended programming interface for this
service.

You can call ATBCMCTU from an unauthorized program to request that the APPC
component clean up all conversation resources associated with a transaction
program instance that is running in the caller’s address space. Conversation

ATBALC2 - Allocate (For MVS/ESA 4.3 through OS/390 Release 7)

E-24 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

resources include network resources, control blocks, and buffers which are used by
the APPC component to manage the transaction program instance and its
conversations.

ATBCMCTU is an unauthorized version of the ATBCMTP service described in z/OS
MVS System Messages, Vol 3 (ASB-BPX).

The primary use for ATBCMCTU is to clean up conversation resources left after
testing a TP with the Register_Test and Accept_Test services.

The specified TP_ID is deleted from the system as a result of this call, but cleanup
processing occurs asynchronously. Conversations with active APPC requests are
not immediately deallocated. After the partner TP responds, APPC/MVS returns a
deallocate condition and deallocates the conversation.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters
TP_ID

Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Specifies the transaction program instance which is to be cleaned up. All
conversations owned by this transaction program instance are to be
deallocated.

Condition
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

CALL ATBCMCTU (TP_ID,
Condition,
Return_Code

);

Figure E-3. ATBCMCTU - Cleanup_TP (Unauthorized Version)

ATBCMCTU - Cleanup_TP (Unauthorized, for MVS/ESA 4.2)

Appendix E. Previous Versions of APPC/MVS Callable Services E-25

Specifies the deallocation condition that has occurred. This field is used to
determine the type of deallocate and sense code that is issued by the APPC
component to the partner transaction program.

Valid values for this parameter are:

Value Meaning

0 Normal

Specifies that the transaction program completed normally, even though
it may have left active conversations. The APPC component deallocates
all conversations in a proper state for normal deallocation with
DEALLOCATE TYPE(SYNC_LEVEL). All conversations not in the
proper state for a normal deallocation are deallocated with
TYPE(ABEND_SVC).

1 System

Specifies that the transaction program terminated abnormally. All active
conversations are deallocated with TYPE(ABEND_SVC).

Note: If the value is not one of the values listed above, 0 (Normal) is used as
the default.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

ATBCMCTU may return one of the following values in the return code
parameter:

Decimal Value Meaning

0 Request accepted. All conversations owned by the transaction
program instance will be cleaned up asynchronously.

4 No conversations exist to be cleaned up.

8 The TP_ID parameter specified a nonexistent transaction
program instance or a transaction program not in the caller’s
home address space.

32 The requested service is not supported in the caller’s
environment. For example, this return code will be given if the
caller invokes any of the transaction scheduler services while
holding a system lock.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Restrictions
v Transaction programs that call the Cleanup_TP service while in task mode

should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

v Regardless of the condition parameter value specified for this service,
APPC/MVS cleans up protected conversations differently, depending on whether

ATBCMCTU - Cleanup_TP (Unauthorized, for MVS/ESA 4.2)

E-26 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

a syncpoint operation is in progress. When a syncpoint operation is in progress
for the current UR for the context with which the protected conversation is
associated, APPC/MVS does not immediately deallocate the conversation. The
syncpoint operation is allowed to complete. As part of the syncpoint processing,
the protected conversation might be deallocated, in which case no further
cleanup is required for that conversation.

If the conversation was not deallocated, however, cleanup processing proceeds
in the same manner as it does when a syncpoint operation is not in progress at
the time the Cleanup service is issued:

– The protected conversation is deallocated with TYPE(ABEND_SVC).

– The current UR is put into backout-required state.

– If the protected conversation is an inbound conversation, the logical unit of
work ID (LUWID) for the next UR is reset.

– The current UR and subsequent units of recovery for the context will not
include the protected conversation being cleaned up by this service.

ATBGETP - Get_TP_Properties

Note: You cannot use the Error_Extract conversation service to diagnose errors in
calls to the Get_TP_Properties service.

Equivalent to:
v LU 6.2 Get_TP_Properties
v (No CPI equivalent)

Returns information pertaining to the transaction program issuing the call.

Requirements

Authorization: Supervisor state or problem state, any PSW key
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

CALL ATBGETP(
Own_TP_name_length,
Own_TP_name,
Own_fully_qualified_LU_name,
User_id,
Profile,
LUW_id,
Return_code

);

Figure E-4. ATBGETP - LU 6.2 Get_TP_Properties

ATBCMCTU - Cleanup_TP (Unauthorized, for MVS/ESA 4.2)

Appendix E. Previous Versions of APPC/MVS Callable Services E-27

Parameters
Own_TP_name_length

Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Own_TP_name_length specifies the length of data contained in the
Own_TP_name parameter. If the Own_TP_name parameter does not contain a
TP_name on return from this service, Own_TP_name_length is set to zero.

Own_TP_name
Returned parameter
v Type: Character string
v Char Set: 00640 or Type A
v Length: 64 bytes

Own_TP_name specifies the name of the local program as specified in the
FMH-5 allocation request. This parameter will only contain a return value if the
local program was started as the result of an attach request from a partner
program. If this is not the case, there is no TP name to be returned, and
Own_TP_Name_Length is set to zero.

Own_fully_qualified_LU_name
Returned parameter
v Type: Character string
v Char Set: Type A
v Length: 17 bytes

Own_fully_qualified_LU_name specifies the network-qualified name of the local
logical unit.

User_id
Returned parameter
v Type: Character string
v Char Set: No restriction
v Length: 10 bytes

User_id specifies the user ID that is associated with the caller’s address space.
If the address space contains a scheduled transaction program, the User_id
parameter contains the user ID that accompanied the inbound transaction
program request.

Profile
Returned parameter
v Type: Character string
v Char Set: No restriction
v Length: 10 bytes

Profile specifies the RACF group name associated with the caller’s address
space. If the address space contains a scheduled transaction program, the
profile parameter contains the RACF group name that accompanied the
inbound transaction program request. If the inbound request did not include a
profile, the profile parameter contains the default profile for the transaction
program that issued the request.

LUW_id
Returned parameter

ATBGETP - Get_TP_Properties

E-28 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v Type: Structure
v Char Set: N/A
v Length: 26 bytes

LUW_id specifies the logical unit of work (LUW) identifier. The LUW identifier is
used by some logical units for accounting purposes. If no LUW identifier is
present, this field will contain binary zeroes.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Return_code specifies the return code that is returned to the local program. In
cases where an error code is returned, the program should not examine any
other returned variable associated with the call as nothing is placed in the
variables.

See “Return Codes” for descriptions of return codes that can be returned to a
caller of Get_TP_Properties.

Return Codes
Valid return code values for the Return_code parameter are:

Table E-4. Return Codes for the Get_TP_Properties Service

Return
Code

Value, Meaning, and Action

0 Value : OK

Meaning : The call completed successfully.

System Action : The system continues processing.

Application Programmer Response : None required.

20 Value : Product_specific_error

Meaning : The system found a product-specific error.

System Action : The system might write symptom records, which describe
the error, to the logrec data set.

Application Programmer Response : See “Diagnosing Product-Specific
Errors” on page 6-46 for more information about product-specific errors.

ATBGETP - Get_TP_Properties

Appendix E. Previous Versions of APPC/MVS Callable Services E-29

Table E-4. Return Codes for the Get_TP_Properties Service (continued)

Return
Code

Value, Meaning, and Action

25 Value : Program_state_check

Meaning : The program called a service under conditions in which the call is
not valid; for example:

v APPC/MVS might not recognize the program as a local TP.

v APPC/MVS might have encountered temporary environmental conditions
that prevent it from obtaining the requested information.

The program should not examine any other returned variables associated
with the call because nothing is placed in those variables.

System Action : The state of the conversation remains unchanged.

Application Programmer Response : Design the program to re-issue the
call; this error condition might be temporary.

Restrictions
Transaction programs that call the Get_TP_Properties service while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

ATBGETP - Get_TP_Properties

E-30 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Appendix F. Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1991, 2001 F-1

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book is intended to help the customer to design and write APPC/MVS
transaction programs. This book documents General-use Programming Interface
and Associated Guidance Information provided by z/OS.

General-use programming interfaces allow the customer to write programs that
obtain the services of z/OS.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v AIX
v ACF/VTAM
v AS/400
v BookManager
v C/370
v CICS
v DB2
v IBM
v IBMLink
v IMS
v MVS
v MVS/ESA
v OpenEdition
v OS/2
v OS/390
v OS/400
v RACF
v Resource Link
v SP
v SecureWay
v VM/ESA
v VTAM

F-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

v z/OS

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product and service names may be the trademarks or service
marks of others.

Appendix F. Notices F-3

F-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Glossary

This glossary defines technical terms and
abbreviations used in APPC/MVS documentation.
If you do not find the term you are looking for,
refer to the index of the appropriate APPC/MVS
book or view the IBM Glossary of Computing
Terms, located on the Internet at:
http://www.ibm.com/ibm/terminology

This glossary includes terms and definitions from
American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standard (ANSI).
Copies may be purchased from the American
National St Institute, 11 West 42nd Street, New
York, New York 10036.

A
access method control block (ACB). A control block
that links an application program to an access method
such as VSAM or VTAM.

access method. A software component in a processor
for controlling the flow of information.

adjacent nodes. Nodes that are connected to a given
node by one or more links with no intervening nodes.

Advanced Program-to-Program Communication
(APPC). A set of inter-program communication
services that support cooperative transaction processing
in a SNA network. APPC is the implementation, on a
given system, of SNA’s logical unit type 6.2. See also
logical unit type 6.2 and APPC/MVS.

allocate queue. In APPC, a structure containing
elements that represent requests to allocate (start) a
conversation with an APPC/MVS server. APPC/MVS
queues allocate requests on a first-in, first-out (FIFO)
basis until they are selected (received) by an
APPC/MVS server.

allocate queue keep time. An APPC/MVS server can
specify a keep time for an allocate queue for which it is
registered. Keep time is the number of seconds
APPC/MVS maintains an allocate queue when there are
no servers for an allocate queue. For example, keep
time would take effect when the last server of an
allocate queue unregisters.

allocate queue token. When an APPC/MVS server
registers to serve inbound allocate requests, APPC/MVS
returns an allocate queue token to the server. This
token uniquely identifies the queue of allocate requests
(or allocate queue) to be served. On subsequent calls to
APPC/MVS services, the server uses the allocate queue

token to indicate the allocate queue upon which a
requested function is to be performed.

allocate request. In APPC, a request from a
transaction program to allocate (start) a conversation
with another transaction program. The request may be
inbound (arriving from the network for a local
transaction program) or outbound (going from a local
transaction program onto the network).

APPC. See Advanced Program-to-Program
Communication.

APPC component. The component of MVS that is
responsible for extending LU 6.2 and CPI
Communications services to applications running in any
MVS address space. Includes APPC conversation and
scheduling services.

APPC/MVS. The implementation of SNA’s LU 6.2 and
related communication services in the MVS base control
program.

APPC/MVS server. In APPC, an MVS application
program that uses the APPC/MVS Receive_Allocate
callable service to process work requests on behalf of
one or more requestor programs (client TPs). An
APPC/MVS server can serve multiple client TPs serially
or concurrently.

APPC/MVS transaction scheduler. A program
supplied by APPC/MVS that is responsible for
scheduling, initiating, and terminating MVS TPs in
response to inbound work requests.

APPC/VM. The implementation of APPC on a VM
system.

APPC/VTAM. The implementation of APPC on VTAM.

Application-to-application communication. A set of
inter-program communication services that support
cooperative transaction processing in an SNA network.
See also logical unit type LU 6.2.

application. A collection of software components, or
programs, used to perform specific types of
user-oriented work on a computer. Compare with
distributed application.

B
backout. The process of restoring data changed by an
application program to the state at its last sync point.
Synonymous with rollback and abort

base logical unit. In APPC/MVS, the default logical
unit for outbound work. When a transaction program
allocates a conversation but leaves the Local_LU_name

© Copyright IBM Corp. 1991, 2001 G-1

http://www.ibm.com/ibm/terminology

parameter blank, the system can use a base LU to
handle the conversation. A base LU can be associated
with a transaction scheduler, or it can be a NOSCHED
LU.

See also system base LU.

basic conversation. A type of conversation in which
programs exchange data records in an SNA-defined
format. This format is a stream of data containing 2-byte
length prefixes that specify the amount of data to follow
before the next prefix. Contrast with mapped
conversation.

bind. In SNA, a request to activate a session between
two logical units.

boundary function. A capability of a subarea node to
provide protocol support for attached peripheral nodes.

C
call. See communication call.

change number of sessions. This is a set of verbs
provided by SNA that allow an application to change the
(LU,mode) session limit, which controls the number of
LU-LU sessions per mode name that are available
between two LUs for allocation to conversations.

class of service. A designation of the path control
network characteristics, such as path security,
transmission priority, and bandwidth, that apply to a
particular session.

client. A functional unit that receives shared services
from a server.

client/server. The model of interaction in distributed
data processing in which a program at one site sends a
request to a program at another site and awaits a
response. The requesting program is called a client; the
answering program is called a server.

CNOS. See change number of sessions.

commit. (1) To end the current scope of recovery and
begin a new one. (2) To make all changes permanent
that were made to one or more database files since the
last commit or backout operation, and make the
changed records available to other users.

committed change. A database change that will not
be backed out during system failure. Changes made by
a logical unit of work are committed when the sync point
at the end of the logical unit of work is complete.

Common Programming Interface. Provides
languages, commands and calls that allow the
development of applications that are more easily
integrated and moved across multiple environments.

communication call. A conversation statement that
transaction programs can issue to communicate through
the LU 6.2 protocol boundary. The specific calls that a
transaction program can issue are determined by the
program’s current conversation state. See also verb.

communication controller node. A subarea node that
contains a network control program.

communications interface. A uniform set of calls
within the Common Programming Interface that different
systems use to request services. See also
communication call and verb.

configuration. The arrangement of a computer system
or network as defined by the nature, number, and chief
characteristics of its functional units.

contention loser. When the LUs at both ends of a
session request to allocate a conversation
simultaneously, the contention loser is the LU that must
request and receive permission from the session partner
LU to allocate the conversation. Contrast with
contention winner .

contention winner. When the LUs at both ends of a
session request to allocate a conversation
simultaneously, the contention winner is the LU that can
allocate the conversation without requesting permission
from the session partner LU. Contrast with contention
loser .

conversation. A logical connection between two
programs over an LU type 6.2 session that allows them
to communicate with each other while processing a
transaction. See also basic conversation and mapped
conversation.

conversation characteristics. The attributes of a
conversation that determine the functions and
capabilities of programs within the conversation.

conversation_ID. An 8-byte identifier, used in
Get_Conversation calls, that uniquely identifies a
conversation. It is returned from APPC/MVS on the
CMINIT, ATBALC2, ATBALLC, ATBGETC, and ATBRAL2
calls and is required as input on subsequent
APPC/MVS calls.

conversation partner. One of the two programs
involved in a conversation.

conversation state. The condition of a conversation
that reflects what the past action on that conversation
has been and that determines what the next set of
actions may be.

coupling services. In a sysplex, the functions of XCF
that transfer data and status among members of a
group residing on one or more MVS systems in the
sysplex.

CPI. See Common Programming Interface.

Glossary

G-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

cross-system coupling facility (XCF). XCF provides
the MVS coupling services that allow programs on MVS
systems in a multisystem environment to communicate
(send and receive data) with programs on MVS
systems.

D
database token. In APPC/MVS, a 1- through
8-character name used in a security definition to
represent a TP profile or side information file name.

data channel. A device that connects a processor and
main storage with I/O control units.

data link control protocol. Specifications for
interpreting control data and transmitting data across a
link.

directory services. Services for resolving user
identifications of network components to network routing
information.

domain. A system services control point (SSCP) and
the resources that it can control.

E
end user. The ultimate source or destination of data
flowing through an SNA network. An end user can be
an application program or a workstation operator.

event queue. Each APPC/MVS server can be
associated with an event queue. A server can request to
be notified of events related to an allocate queue for
which it is registered. When such an event occurs,
APPC/MVS places an element on the server’s event
queue. The server can determine which event occurred
by examining the element (through the Get_Event
service).

F
FMH-5. Functional Management Header 5 -- an SNA
data structure that APPC uses to pass requests to
allocate transaction program conversations between
logical units.

fully qualified name. Synonym for network-qualified
name.

G
generic resource name. A name that represents
multiple APPC/MVS logical units (LUs) that provide the
same function in order to handle session distribution
and balancing.

generic userid. In APPC/MVS, a userid, specified in
the TP profile, that provides the initial security

environment for a multi-trans TP. The generic userid
covers the TP’s initial processing until a successful
Get_Transaction call is made. The generic userid also
covers termination processing, and any processing
following a Return_Transaction call until a subsequent
successful Get_Transaction call.

H
half-duplex protocol. A communications protocol
where only one communications partner can send data
at a time.

host node. A subarea node that contains a system
services control point.

I
inbound request. A request arriving at a logical unit
(LU) from a partner transaction program. The LU must
establish the environment and start the local transaction
program that is to handle the request. See also allocate
request.

inbound transaction program. A transaction program
on MVS that is initiated and scheduled in response to
an inbound request from a partner transaction program.
Contrast with outbound transaction program.

J
JCL. See Job Control Language.

JECL. See Job Entry Control Language.

Job Control Language. A problem-oriented language
designed to express statements in a job that identify the
job or describe its requirements to an operating system.

Job Entry Control Language. A problem-oriented
language designed to express statements in a job that
describe its requirements to an operating system’s job
entry subsystem.

jobid. See job identifier.

job identifier. The job identifier is a unique value that
can be used to uniquely identify a JES job.

K
keep time. see allocate queue keep time

L
layer. A layer is a grouping of related functions that
are logically separate from other functions; the
implementation of the functions in one layer can be
changed without affecting functions in other layers.

Glossary

Glossary G-3

link. A link is a transmission medium and data link
control component that together transmit data between
adjacent nodes.

local transaction program. The program being
discussed within a particular context. Contrast with
partner transaction program.

logical unit. A port providing formatting, state
synchronization, and other high-level services through
which an end user communicates with another end user
over an SNA network.

logical unit of work. The processing a program
performs from one sync point to the next.

logical unit type 6.2. The SNA logical unit type that
supports general communication between programs in a
cooperative processing environment; the SNA logical
unit type on which CPI communications and APPC/MVS
TP conversation services are built.

logon mode. A logon mode contains the parameters
and protocols that determine a session’s characteristics.
Logon modes are defined in VTAM’s mode table in
SYS1.VTAMLIB.

LU. See logical unit.

LU=local. In APPC/MVS, a situation in which a pair of
communicating transaction programs are on the same
MVS system.

LU=own. In SNA terms, a situation in which a pair of
communicating transaction programs are defined to the
same logical unit (LU).

M
management services. In SNA, functions distributed
among network components to operate, manage, and
control the network.

mapped conversation. A type of conversation in
which programs exchange data records with arbitrary
data formats agreed upon by the applications
programmers. Mapped conversations use mapped verbs
that do not require the prefix information used in basic
verbs. Contrast with basic conversation.

mode name. A symbolic name for a set of session
characteristics. For LU 6.2, a mode name and a partner
LU name together define a session or a group of
parallel sessions having the same characteristics.

multi-trans. Multi-trans scheduling allows properly
designed TPs to remain active between conversations
and handle multiple inbound conversations in sequence,
without having to deallocate and reallocate resources.
Because they can be accessed by multiple users,
multi-trans TPs are responsible for the security of their
resources and conversations. Contrast with standard.

multi-trans shell. The outer level of a transaction
program with a TP_schedule_type of multi-trans, which
sets up an environment and accepts inbound
conversation requests in sequence by calling the
Get_Transaction (ATBGTRN) service. The shell may
also call the Return_Transaction (ATBRTRN) service to
restore its shell environment for other processing
between conversations. For more information, see
TP_Schedule_Type.

N
network addressable unit. A logical unit, physical
unit, or system services control point.

network-qualified name. A name that uniquely
identifies a specific resource (such as an LU) within a
specific network. It consists of a network identifier and a
resource name, each of which is a 1- to 8-byte symbol
string. Synonymous with fully qualified name.

node. An end point of a link, or a junction common to
two or more links in a network. Nodes can be
processors, controllers, or workstations. Nodes can vary
in routing and other functional capabilities.

NOSCHED logical unit (LU). In APPC/MVS, a logical
unit (LU) that is not associated with a transaction
scheduler. Such LUs do not require a transaction
scheduler to be started to be active. NOSCHED LUs
are used by outbound transaction programs and
APPC/MVS servers.

O
one-way-half duplex. The format of APPC
communications between two transaction programs.
One transaction program is in ‘send’ state and the other
is in ‘receive’ state.

outbound request. A request arriving at a logical unit
(LU) from a local transaction program. The LU must
place the request on the SNA network. See also
allocate request.

outbound transaction program. In APPC, a
transaction program that requests a conversation with a
partner (inbound) transaction program. The outbound
TP issues an allocate request to allocate (start) the
conversation. Contrast with inbound transaction
program.

P
pacing. A technique by which a receiving component
controls the rate of transmission by a sending
component to prevent overrun or congestion.

partner. See conversation partner.

Glossary

G-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

partner transaction program. The program at the
other end of a conversation with respect to the local
program. Contrast with local program.

peripheral node. A node that uses local addresses
and therefore is not affected by changes in network
addresses. A peripheral node requires boundary
function assistance from an adjacent subarea node.

persistent sessions. The option for VTAM persistent
sessions allows LU-LU sessions to remain active during
interruptions in APPC/MVS service and preserves
conversation requests until APPC/MVS service
resumes. The PSTIMER parameter in the APPCPMxx
parmlib member’s LUADD statement controls whether
sessions persist and for how long.

persistent verification. Persistent verification (PV) is
a way of reducing the number of password
transmissions, by eliminating the need to provide a
userid and password on each attach (allocate) during
multiple conversations between a user and a remote
LU. The user is verified during the sign-on process and
remains verified until the user has been signed-off the
remote LU.

physical unit. The component that manages and
monitors the resources of a node as requested by a
system services control point.

privilege. An identification that a product or installation
defines in order to differentiate SNA service transaction
programs from other programs, such as application
programs.

protected conversation. An LU 6.2 conversation that
has a synchronization level of syncpt, and that supports
two-phase commit protocols for resource recovery and
resynchronization protocols. Contrast with unprotected
conversation.

protected resource. (1) A resource defined to RACF
for the purpose of controlling access to the resource.
Some of the resources that can be protected by RACF
are DASD and tape data sets, DASD volumes, tape
volumes, terminals, and any other resources defined in
the class descriptor table. (2) A resource (for example, a
database) that can be modified only in accordance with
two-phase commit protocols.

protocol. The meaning of, and the sequencing rules
for, requests and responses used for managing a
network, transferring data, and synchronizing the states
of network components.

protocol boundary. A software connection between
nodes that provides program-to-program communication
through either a set of conversation verbs or high-level
language subroutine calls.

PU. See physical unit.

R
receive state. The condition of a conversation in
which a transaction program can receive data.

registered transaction program. A transaction
program that performs a specialized function on behalf
of an LU.

resource. Any facility of a computing system or
operating system required by a job or task, and
including main storage, input/output devices, the
processing unit, data sets, and control or processing
programs.

S
SDLC. See Synchronous Data Link Control.

SDSF. See System Display and Search Facility.

security information. For APPC/MVS, a userid,
password, and security profile name passed on an
allocate request from a transaction program to its
partner. The partner’s system can verify the information
and permit or deny the request accordingly.

security profile. For APPC/MVS, an optional
character string passed as security information on an
allocate request from a transaction program to its
partner. When the partner is on MVS with RACF
protection, the system treats the security profile as a
RACF groupid, and can verify that the requester has
access to that group.

send state. The condition of a conversation in which a
transaction program can send data or request resource
synchronization.

served transaction program (TP). In APPC/MVS, a
transaction program that is processed by an APPC/MVS
server, rather than by a partner TP that has been
scheduled by a transaction scheduler.

server. A functional unit that provides shared services
to workstations over a networks; for example, a file
server, a print server, a mail server. See also
APPC/MVS server.

session. A logical connection between two logical
units that can be activated, tailored to provide various
protocols, and deactivated as requested.

shell, multi-trans. See multi-trans shell.

shell, test. See test shell.

side information. A collection of system-defined
values for transaction programs whose partners call
them by symbolic destination names
(sym_dest_names). When a transaction program calls

Glossary

Glossary G-5

its partner by a sym_dest_name, APPC uses the
associated values to establish a conversation between
them.

SJF. See scheduler JCL facility.

SNA. See Systems Network Architecture

SNA service transaction program. An IBM-supplied
transaction program running in an LU that provides
utility services to application transaction programs or
that manages LUs.

SPI. See systems programming interface.

SSCP. See system services control point.

SSI. See subsystem interface.

standard. The standard TP_Schedule_Type for
APPC/MVS. TPs that are scheduled as standard are
initialized and terminated for each inbound conversation.
Contrast with multi-trans.

standard transaction program. See transaction
program.

state. See conversation state.

state transition. The act of moving from one
conversation state to another.

subarea. A portion of an SNA network that consists of
a subarea node, and any attached links and peripheral
nodes.

subordinate address space. An address space,
managed by a transaction scheduler, in which a
transaction program runs.

subsystem interface. The subsystem interface (SSI)
is the means by which MVS system routines request
services of the master subsystem, a job entry
subsystem, or any subsystem defined to MVS through
the subsystem definition process.

symbolic destination name. A variable that specifies
the symbolic name of the destination LU and partner
program, as well as the mode name for the session
carrying the conversation. The symbolic destination
name is provided by the transaction program and points
to an entry in the side information.

Synchronous Data Link Control. A discipline for
managing synchronous, code-transparent, serial-by-bit,
information transfer over a link. SDLC conforms to
subsets of the Advanced Data Communication Control
Procedures (ADCCP) of the American National
Standards Institute and High-level Data Link Control
(HDLC) of the International Standards Organization.

sync point. An intermediate or end point during
processing of a transaction at which an update or
modification to one or more of the transaction’s

protected resources is logically complete and error free.
Synonymous with synchronization point, commit point,
and point of consistency.

sync point manager (SPM). The component of the
node that implements two-phase commit and
resynchronization processing. In an MVS system, the
component is RRS.

SYSOUT. A system output stream; also, an indicator
used in data definition statements to signify that a data
set is to be written on a system output unit.

sysplex. A sysplex (systems complex) is the set of
one or more MVS systems that is given an XCF sysplex
name and in which programs in the systems can then
use XCF services.

system base LU. A logical unit that is the default LU
for outbound work requests from MVS programs (TSO/E
users, started tasks, and other work) that are not
associated with a scheduler or an LU. The system base
LU is either:

v An LU defined with the NOSCHED and BASE
parameters, or

v If a base NOSCHED LU is not defined, the LU
defined as the base LU for the APPC/MVS
transaction scheduler.

System Display and Search Facility. The System
Display and Search Facility is a program product that
acts as a system management aid allowing users to
efficiently analyze and control the operation of an
MVS/JES2-based system.

system services control point. A focal point within an
SNA network for managing the configuration,
coordinating network operator and problem
determination requests, and providing directory services
and other session services for end users of a network.
Multiple SSCPs, cooperating as peers with one another,
can divide the network into domains of control, with
each SSCP having a hierarchical control relationship to
the physical units and logical units within its own
domain.

Systems Network Architecture (SNA). A description
of the logical structure, formats, protocols, and
operational sequences for transmitting information units
through, and controlling the configuration and operation
of networks.

systems programming interface (SPI). Provides
languages, commands and calls that allow the
development of applications that are more easily
integrated and moved across multiple environments.

T
telecommunication link. A physical medium, such as
a wire or microwave beam, that is used to transmit data.

Glossary

G-6 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

test shell. A program that sets up an environment to
test transaction programs in its own address space,
using APPC/MVS Test services. The TSO/E TEST
command is an example of a test shell.

TP. See transaction program.

TP instance. A copy of a transaction program (TP) on
MVS, scheduled and initiated in response to an inbound
allocate request. A TP instance differs from a TP in that
a TP is a program using communication functions and a
TP instance is the actual processing of those functions
in MVS. Multiple instances of the same TP can run
simultaneously, each in response to a separate request
and on behalf of a different user.

See also TP_ID.

TP message log. A log that contains runtime
messages for a transaction program. The parameters
that define the TP message log are in the program’s TP
profile and in an ASCHPMxx parmlib member.

TP profile. The information required to establish the
environment for and attach a transaction program on
MVS, in response to an inbound allocate request for
that transaction program.

TP_ID. Transaction Program Identifier: a unique
8-character token that APPC/MVS assigns to each
instance of a transaction program. When multiple
instances of a transaction program are running
simultaneously, they have the same transaction program
name, but each has a unique TP_ID.

TP_Schedule_Type. A type of transaction program,
based on attributes provided by the transaction
programmer. Those attributes can influence the
performance of the transaction program, and must be
reflected in the TP profile. For more information about
specific TP_Schedule_Types in APPC/MVS, see
standard and multi_trans.

transaction. A unit of work performed by one or more
transaction programs, involving a specific set of input
data and initiating a specific process or job.

transaction initiator. A program that runs in a
subordinate address space of the APPC/MVS
transaction scheduler and initiates an APPC transaction
program in response to an inbound request.

transaction program (TP). A program used for
cooperative transaction processing within an SNA
network. For APPC/MVS, any program on MVS that
issues APPC/MVS or CPI Communication calls, or is
scheduled by the APPC/MVS transaction scheduler.

transaction scheduler. A scheduler program that is
responsible for job management of incoming work
requests from cooperative transaction programs. The
default transaction scheduler for APPC/MVS is the
APPC/MVS transaction scheduler; however, an

installation can define and use alternative transaction
schedulers for specific applications.

two-phase commit. (1) The protocol that permits
updates to protected resources to be committed or
backed out as a unit. During the first phase, resource
managers are asked if they are ready to commit. If all
resource managers respond positively, they are asked
to commit their updates. Otherwise, the resource
managers are asked to back out their updates. (2) The
protocols used by the sync point manager to accomplish
a commit operation.

U
unit of recovery. A sequence of operations within a
unit of work between sync points.

unit_of_work_id. An 8-character ID assigned by a
transaction scheduler to an inbound allocate request.
The APPC/MVS transaction scheduler uses this value
as the job ID when the inbound TP is initiated on MVS.

unprotected conversation. An LU 6.2 conversation
that has a synchronization level of none or confirm. If
conversation errors or failures occur, the resources used
by the application might be in inconsistent states.
Contrast with protected conversation.

userid. (1) A symbol identifying a system user. (2) A
code that uniquely identifies a user to the system.

user token. A collection of identity and security
information that represents a user or a job. The token
contains a userid, groupid, security class, origin node,
and session type, where session type is TSO/E logon,
started task, batch job, operator, or trusted computing
base.

UTOKEN. See user token.

V
verb. The SNA term for a conversation function that
transaction programs can use to communicate with
each other through the LU 6.2 protocol boundary. The
SNA verbs provide similar functions but are
implemented differently on the different systems (MVS,
VM, OS/2 and OS/400) that support them. See also
communication call.

W
work_unit_identifier (WUID). See unit_of_work_id.

X
XCF. See cross-system coupling facility.

Glossary

Glossary G-7

Glossary

G-8 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Index

Numerics
00640 character set

contents A-1
01134 character set

contents A-1

A
ABEND processing 2-18
Accept_Test service

reference 9-4
using 5-2

administrative system file
side information

overview 1-12
TP profile

overview 1-12
advanced TP service 9-1
allocate queue service

description 1-11
allocate request

inbound
definition 1-6

outbound
definition 1-6

Allocate service
ATBALC2 reference E-10
reference 8-1, E-1
using 4-4

API trace facility
avoiding loss of trace data

through suspension of tracing activity 6-10
through wrapping 6-10

compared with other diagnostic tools 6-3
interpreting trace data 6-32
overview 6-7
security requirement 6-8
setting up trace data sets 6-8
starting tracing activity 6-11
supported APPC/MVS and CPI-C calls 6-5
trace data set characteristics 6-9
using the ATBTRACE REXX exec

messages 6-20
methods of invoking 6-22
programming requirements 6-20
restrictions 6-20
return codes 6-20
to list tracing activity 6-31
to start tracing 6-27
to stop tracing 6-30

when to use 6-1
APPC (Advanced Program-to-Program Communication)

overview 1-1
APPC/MVS

callable service
advanced TP 9-1
for CPI Communications 3-1

APPC/MVS (continued)
callable services

combining CPI and MVS TP calls 2-14
for TP conversations 8-1
overview 1-9

definition 1-9
relation to APPC/VTAM 1-9
server 1-14
transaction scheduler 1-14

APPC/MVS allocate queue services
description 1-11

APPC/MVS server 1-14
APPCCMD macro

timeout considerations 4-13
applications for APPC/MVS 2-2
ASCII data

converting to EBCDIC 2-17
assembler programming language

call syntax 7-2
Asynchronous_Manager service

reference 9-1
using 4-11, 4-23

asynchronous processing
overview 2-14
using Notify_Type on MVS TP service 4-10

ATBTRACE REXX exec
issuing a LIST request

parameter descriptions 6-31
syntax 6-31

issuing a START request
parameter descriptions 6-27
syntax 6-27

issuing a STOP request
parameter descriptions 6-30
syntax 6-30

messages 6-20
methods of invoking

from a high-level language program 6-22
in MVS batch mode 6-22
in TSO/E 6-22
through TP profile JCL 6-22

programming requirements 6-20
restrictions 6-20
return codes 6-20

B
benefits of APPC/MVS 2-1

C
C programming language

call syntax 7-2
call syntax

for APPC/MVS service 7-2
for CPI Communications 3-4

callable services
advanced TP 9-1

© Copyright IBM Corp. 1991, 2001 X-1

callable services (continued)
combining CPI Communications and MVS TP

calls 2-14
for CPI Communications 3-1
for TP conversation 8-1
overview 1-9

character set
used in APPC/MVS A-1

Cleanup_TP--Unauthorized service
MVS/ESA SP 4.2.0 version reference E-24
MVS/ESA SP 4.2.2 version reference 9-5
using 5-2

CMACCP (Accept_Conversation) 3-1
CMALLC (Allocate) 3-1
CMCFM (Confirm) 3-1
CMCFMD (Confirmed) 3-1
CMDEAL (Deallocate) 3-1
CMECT (Extract_Conversation_Type) 3-1
CMEMN (Extract_Mode_Name) 3-1
CMEPLN (Extract_Partner_LU_Name) 3-1
CMESL (Extract_Sync_Level) 3-1
CMFLUS (Flush) 3-1
CMINIT (Initialize_Conversation) 3-1
CMPTR (Prepare_to_Receive) 3-1
CMRCV (Receive) 3-1
CMRTS (Request_to_Send) 3-1
CMSCT (Set_Conversation_Type) 3-2
CMSDT (Set_Deallocate_Type) 3-2
CMSED (Set_Error_Direction) 3-2
CMSEND (Send_Data) 3-2
CMSERR (Send_Error) 3-2
CMSF (Set_Fill) 3-2
CMSLD (Set_Log_Data) 3-2
CMSMN (Set_Mode_Name) 3-2
CMSPLN (Set_Partner_LU_Name) 3-2
CMSPTR (Set_Prepare_to_Receive_Type) 3-2
CMSRC (Set_Return_Control) 3-2
CMSRT (Set_Receive_Type) 3-2
CMSSL (Set_Sync_Level) 3-2
CMSST (Set_Send_Type) 3-2
CMSTPN (Set_TP_Name) 3-2
COBOL programming language

call syntax 7-2
concurrent APPC requests from one TP 2-13
Confirm service

reference 8-16
using 4-8

confirmation
granting 2-4
requesting 2-4

Confirmed service
reference 8-24
using 4-8

contention between LUs
definition 1-9
loser 1-9
winner 1-9

specifying 8-5, E-5, E-14
conversation

basic and mapped
overview 2-16

conversation (continued)
basic and mapped (continued)

specifying on Allocate service 4-4, 8-49
definition for APPC 1-5
ending

overview 2-5
when errors occur 2-18

flow diagram
confirmed transaction 2-9
one-way conversation 1-4, 2-7
sending error notification 2-10
two-way conversation 2-8

inbound
definition 1-6
overview 1-15

outbound
definition 1-6
overview 1-14

protected 2-17
security 2-15
services

map to APPC/MVS services 2-5
overview 2-3

services of APPC/MVS 8-1
starting

overview 2-3
state

definition 1-6
for CPI Communications 3-6
for MVS TP service 4-1
overview 2-3

conversation correlator
description 4-5

conversation_ID
definition 1-5

Conversation_ID parameter
on Error_Extract service 8-35

CPI (Common Programming Interface) Communications
call syntax 3-4
calls supported by APPC/MVS 3-1

combining with MVS TP calls 2-14
conversation states 3-6
overview 3-1
programming scenario 1-4
relation to APPC 1-3
transaction program environment 3-3

D
data

converting between ASCII and EBCDIC 2-17
from the API trace facility 6-8
granting permission to send

overview 2-4
receiving

overview 2-4
requesting permission to send

overview 2-4
sending

overview 2-4

X-2 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

data set
for use with the API trace facility 6-8

data space
sending data 2-14

Deallocate service
reference 8-26
using 4-9

diagnosis
interpreting API trace data 6-32
problems with a transaction program 6-1
starting API tracing activity 6-11
tools for application programmers 6-1

E
EBCDIC data

converting to ASCII 2-17
ECB (event control block)

using with asynchronous APPC service 4-10
Error_Extract service

calling 6-39
calling for unestablished conversation 6-40
compared with other diagnostic tools 6-3
error log information 6-39
example, synchronous call 6-40, 6-43
for asynchronous calls 6-42
overview 6-38
product set ID 6-39
reason codes 11-1
reference 8-34
supported APPC/MVS and CPI-C calls 6-5
using 4-8
when to use 6-1

error information
returning 2-5

error log information
from Error_Extract service 6-39

error notification
sending

overview 2-4
errors

diagnosing 6-1
how to handle

design considerations 2-18
example

APPC/MVS transaction program 4-24
Extract_Information service

reference 9-8
using 4-17

F
flow diagram of APPC conversation

confirmed transaction 2-9
one-way conversation 1-4, 2-7
sending error notification 2-10
two-way conversation 2-8

Flush service
reference 8-39
using 4-7

FORTRAN programming language
call syntax 7-2

G
generic ID

using with multi-trans TP 4-19
generic user ID

using with multi-trans TP 4-22
Get_Attributes service

reference 8-42
using 4-5

Get_Conversation service
reference 8-48
using 4-4

Get_TP_Properties service
reference 8-52, E-27
using 4-6

Get_Transaction service
reference 9-15
using 4-18

Get_Type service
reference 8-56
using 4-5

H
half-duplex communication 2-3
high level language

C programming language 7-2
FORTRAN programming language 7-2
PL/I programming language 7-2
REXX programming language 7-2

I
inbound

allocate request 1-6
conversation 1-6

J
JES services available to TPs 2-13

L
local LU

definition 1-6
local transaction program

definition 1-5
logical unit type 6.2 (LU 6.2)

relation to APPC 1-1
logon mode

definition 1-9
LU (logical unit)

definition 1-6
local

definition 1-6
partner

definition 1-6
LU 6.2 (logical unit type 6.2)

APPC/MVS services 8-1

Index X-3

LU 6.2 (logical unit type 6.2) (continued)
LU 6.2 verb to APPC/MVS service relationship D-1
option set supported by APPC/MVS D-2
relation to APPC 1-1

M
macro syntax

how to read xiii
multi-trans schedule type

alternative use 4-19
example 4-21
overview 2-15
use for transaction programs 4-18

multiple conversations within a program 2-12

N
network delays, setting a timeout for 4-13
Notices F-1

O
option set

SNA LU 6.2, supported by APPC/MVS D-2
outbound

allocate request 1-6
conversation 1-6

P
partner

transaction program 1-5
partner LU (logical unit)

definition 1-6
performance

for CPI Communication services 3-6
for MVS TP service 4-14

permission to send data
granting

overview 2-4
requesting

overview 2-4
with Request_to_Send service 8-101

PL/I programming language
call syntax 7-2

portability of transaction programs 2-13
Post_on_Receipt service

reference 8-58
using 4-11

Prepare_to_Receive service
reference 8-62
using 4-8

procedures
for writing transaction programs 1-17

protected conversation
design considerations 2-17

R
Receive_and_Wait service

reference 8-85

Receive_and_Wait service (continued)
using 4-7

Receive_Immediate service
reference 8-73
using 4-7

recovery routine 2-18
Register_Test service

reference 9-17
using 5-2

Reject_Conversation service
reference 9-20
using 4-24

Request_to_Send service
reference 8-101
using 4-8

return code
for APPC/MVS services B-1
for CPI Communications services B-1

Return_Transaction service
reference 9-24
using 4-22

REXX programming language
call syntax

for APPC/MVS service 7-2
for CPI Communications 3-5

RPG programming language
call syntax

for CPI Communications 3-5

S
scheduler

definition 1-14
security for APPC

conversation security
overview 2-15
specifying with the Allocate service 8-6, E-6,

E-15
security_none

specifying with the Allocate service 8-6, E-6, E-15
Security_none

definition 2-16
security_pgm

specifying with the Allocate service 8-7, E-6, E-15
security_same

specifying with the Allocate service 8-6, E-6, E-15
Security_same

definition 2-16
specifying with CPI Communications 2-16

Send_Data service
reference 8-103
using 4-7

Send_Error service
reference 8-113
using 4-9

server 1-14
services

APPC conversation
APPC/MVS services 2-5
overview 2-3

X-4 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

session
definition 1-7
parallel 1-8

Set_Conversation_Accounting_Information service
reference 9-26
using 4-17

Set_Syncpt_Options service
reference 8-124

Set_TimeOut_Value service
reference 8-131

shared conversations across program boundaries 2-12
side information

overview 1-12
SNA (systems network architecture)

relation to APPC 1-1
SRB mode support for a transaction program 2-13
standard schedule type

overview 2-15
use for transaction programs 4-18

state
conversation 2-3

state table
how to use C-1

steps
for writing transaction programs 1-17

subordinate address space
definition 1-17

surrogate user IDs
Security_pgm parameter on allocate 8-7, E-7, E-16

systems network architecture (SNA)
relation to APPC 1-1

T
timeout 4-13

description 4-13
Set_TimeOut_Value service 8-131

TP_ID
definition 1-6

TP message log
compared with other diagnostic tools 6-3
when to use 6-1

TP profile
overview 1-12

transaction initiator
definition 1-17

transaction program
advanced service 9-1
characters used in name A-1
comparison of diagnostic tools 6-3
conversation service 8-1
debugging 6-1
definition 1-4
design considerations 2-11
environment

for APPC/MVS services 7-1
for CPI Communications 3-3

environment in APPC/MVS 2-11
installing 5-1
local, definition 1-5
naming 3-2

transaction program (continued)
partner, definition 1-5
return codes B-1
return codes for CPI Communications services B-1
steps for writing 1-17
testing 5-1
writing 2-1

with APPC/MVS LU 6.2 services 4-1
with CPI Communications 3-1

transaction schedule type
overview 2-15
using multi-trans 4-18

alternative 4-19
example 4-21

using standard 4-18
transaction scheduler

definition 1-14
interface, overview 1-14

TSO/E
services available to APPC/MVS transaction

programs 2-13
type A character set

contents A-1

U
Unregister_Test service

reference 9-29
using 5-2

V
verb

LU 6.2 verb to APPC/MVS service relationship D-1
SNA definition 1-5

Version_Service service
reference 9-31

VTAM (Virtual Telecommunications Access Method)
relation to APPC 1-2

Index X-5

X-6 z/OS V1R2.0 MVS Writing TPs for APPC/MVS

Readers’ Comments — We’d Like to Hear from You

z/OS
MVS Programming:
Writing Transaction Programs
for APPC/MVS

Publication No. SA22-7621-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7621-01

SA22-7621-01

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7621-01

	Contents
	Figures
	About This Book
	Who Should Use This Book
	How to Use This Book
	How to Read Syntax Diagrams

	Where to Find More Information
	A Home Page for APPC and Related Networking
	Related Books
	Using LookAt to look up message explanations
	Accessing licensed books on the Web

	Summary of Changes
	Part 1. Introduction
	Chapter 1. Introduction to APPC/MVS
	APPC Overview
	How APPC Relates to SNA, LU 6.2, VTAM, and CPI-C

	APPC Concepts and Commonly Used Terms
	Programming Terms
	Network Terms

	What is APPC/MVS?
	Programming Support for APPC/MVS Callable Services
	Administrative System Files

	z/OS System Support
	Overview of an APPC/MVS Outbound Request
	Overview of an APPC/MVS Inbound Request

	Steps to Write and Install an APPC/MVS Transaction Program
	Application Programming Steps
	System Programming Steps

	Part 2. Programming
	Chapter 2. Designing and Writing an APPC/MVS TransactionProgram
	Benefits of APPC/MVS for Application Programs
	The Elements of Conversation
	Conversation States
	APPC Conversation Services
	Starting a Conversation
	Sending and Receiving Data
	Requesting Permission to Send
	Granting Permission to Send
	Requesting Confirmation
	Sending Error Notification
	Returning Error Information
	Ending Conversations

	Identifying TP Partners to MVS
	Supplying TP Profiles on MVS
	Supplying Side Information on MVS

	Relating MVS Callable Services to CPI Communications
	Flow Diagrams of Typical APPC/MVS Conversations
	Simple One-Way Conversation
	Simple Two-Way Conversation
	Confirmation of a Transaction
	Sending Error Notification

	TP Environment and Design Considerations
	The General APPC/MVS Environment for Transaction Programs
	Requirements for TPs in Problem-Program State
	General Requirements
	Features of APPC/MVS for All TPs

	Portability and MVS-Specific Services
	Features of the MVS-Specific Services

	Security
	Using Basic or Mapped Conversations
	Data Conversion
	Using Protected Conversations
	Error Handling and Deallocation of Conversations
	Error_Extract Service
	Send_Error Service
	API Trace Facility

	Chapter 3. Using CPI Communications
	CPI Communications in APPC/MVS
	Invocation Details for CPI Communications
	Interface Definition Files (IDFs) for CPI-C Calls
	Transaction Program (TP) Environment
	Requirements for TPs in Problem-Program State
	General Requirements
	High-Level Language Compilers

	Calling CPI Communications Routines
	Parameter Descriptions
	Required Modules
	Conversation States

	Performance Considerations

	Chapter 4. The APPC/MVS Programming Interface
	APPC/MVS TP Conversation Services
	APPC/MVS TP Conversation States
	Guide to the Conversation Services
	Starting a Conversation
	Accepting a Conversation
	Obtaining Information about the Conversation
	Getting Current TP Properties
	Changing Syncpoint Options for Protected Conversations
	Sending and Receiving Data
	Requesting Permission to Send
	Granting Permission to Send
	Requesting Confirmation
	Returning Error Information
	Sending Error Notification
	Ending Conversations
	Using Asynchronous Services
	Obtaining Asynchronous Notification of Data to be Received

	Setting a Timeout Value for Potential Network Delays
	Performance Considerations for Conversation Services

	Advanced TP Services
	Extracting Detailed Scheduling and Conversation Information
	Adding User Data to Accounting Records
	Using TP Schedule Types
	Using the Standard Schedule Type
	Using the Multi-Trans Schedule Type
	Examples of Multi-Trans Scheduling
	Security for the Standard and Multi-Trans Schedule Types
	Performance Considerations for TP Schedule Types
	Assigning Multi-Trans TPs to their own Class of TransactionInitiators
	Establishing a Multi-Trans Transaction Program that is AlwaysAvailable
	SMF Recording for Multi-Trans Services

	Identifying and Deallocating Conversations with OutstandingAsynchronous Requests
	Rejecting Conversations
	Testing TPs

	System Services
	Example APPC/MVS Transaction Programs

	Chapter 5. Installing and Testing Transaction Programs
	Installing a TP for Testing
	Testing a TP on MVS
	Methods You Can Use to Create a Test Shell
	Descriptions of APPC/MVS Test Services
	Test Shell Characteristics
	Calling APPC/MVS Test Services from Your Application
	Using the TSO/E TEST Command to Test an Assembler Language TP
	Testing a TP under APPC/MVS Scheduling
	Requesting a User-Level or Group-Level TP Profile
	Requesting Access to a User-Level TP Profile
	Requesting Side Information
	Enabling an LU for User-Level TP Profiles

	Collecting Problem Data for Errors that Occur During Testing
	Displaying APPC Activity on MVS
	Tracing APPC Conversations

	Putting a Tested TP into Production
	Replacing an Active TP

	Chapter 6. Diagnosing Problems with APPC/MVS TPs
	Comparing the Detectives: Error_Extract, API Trace, and the TPMessage Log
	Clues: What Information They Collect
	Modus Operandi: How They Interrogate Suspects
	Fees: How to Reduce the Cost of the Investigation
	The Initial Consultation: Building Your Crime Lab
	The All-Star Collaboration: A Team Approach
	Calls that Error_Extract or API Trace Support

	Diagnosing TP Conversation Errors with the API Trace Facility
	Setting Up API Trace Data Sets
	Getting Access to APPC/MVS Resources for Tracing Activity
	Determining Data Set Characteristics
	Avoiding Loss of Data through Wrapping
	Avoiding Loss of Data through Suspension of Tracing Activity
	Some Suggestions for Data Set Setup...

	Starting API Tracing Activity
	How APPC/MVS Handles an ATBTRACE START Request
	Some Suggestions for ATBTRACE START Requests...

	Using the ATBTRACE REXX Exec
	Programming Considerations
	Output from the API Trace Facility
	Methods of Invoking the ATBTRACE REXX Exec
	Starting an API Trace
	Stopping Trace Activity
	Listing Active API Traces

	Interpreting API Trace Data
	Reading Service-Entry and Service-Return Trace Entries
	Reading Trace Entries When Wrapping Occurred
	Finding All Trace Entries for a Specific Conversation
	Determining the Level of TP Traced
	Assessing the Impact of Trace Entries Lost during Suspension
	Assessing the Impact of Trace Entries Lost because ofTermination

	Overview of Error_Extract Service
	Types of Error Information that Error_Extract Returns
	Error Log Information
	Product Set Identifiers

	Rules for Calling Error_Extract
	Calling Error_Extract for an Unestablished Conversation
	Using Error_Extract for Synchronous and Asynchronous Calls
	Calling Error_Extract for Synchronous Requests
	Example Call to Error_Extract (Synchronous)
	Calling Error_Extract for Asynchronous Requests
	Example Call to Error_Extract (Asynchronous)

	Diagnosing Product-Specific Errors

	Part 3. Reference
	Chapter 7. Invocation Details for APPC/MVS Callable Services
	APPC/MVS Program Environment
	High-Level Language Compilers

	Syntax and Linkage Conventions for the Callable Services
	Parameter Description for Callable Services
	Required Modules
	Versions of Callable Services
	Interface Definition Files (IDFs) for LU6.2 and APPC/MVS Services

	Chapter 8. APPC/MVS TP Conversation Callable Services
	Allocate
	Requirements
	Format
	Parameters
	Return Codes
	Restrictions

	Confirm
	Requirements
	Format
	Parameters
	Return Codes
	Restrictions

	Confirmed
	Requirements
	Format
	Parameters
	Return Codes
	Restrictions

	Deallocate
	Requirements
	Format
	Parameters
	Return Codes
	Restrictions

	Error_Extract
	Requirements
	Format
	Parameters
	Return and Reason Codes
	Restrictions

	Flush
	Requirements
	Format
	Parameters
	Return Codes
	Restrictions

	Get_Attributes
	Requirements
	Format
	Parameters
	Return Codes
	Restrictions

	Get_Conversation
	Requirements
	Format
	Parameters
	Return Codes
	Restrictions

	Get_TP_Properties
	Requirements
	Format
	Parameters
	Return Codes
	Restrictions

	Get_Type
	Requirements
	Format
	Parameters
	Return Codes
	Restrictions

	Post_on_Receipt
	Asynchronous Processing
	Receiving Asynchronous Notification
	Requirements
	Format
	Parameters
	Return Codes
	Restrictions

	Prepare_to_Receive
	Requirements
	Format
	Parameters
	Return Codes
	Restrictions

	Receive_Immediate
	Requirements
	Format
	Parameters
	Return Codes
	Restrictions

	Receive_and_Wait
	Requirements
	Format
	Parameters
	Return Codes
	Restrictions

	Request_to_Send
	Requirements
	Format
	Parameters
	Return Codes
	Restrictions

	Send_Data
	Requirements
	Format
	Parameters
	Return Codes
	Restrictions

	Send_Error
	Requirements
	Format
	Parameters
	Return Codes
	Restrictions

	Set_Syncpt_Options
	Requirements
	Format
	Parameters
	Characteristics and Restrictions

	Set_TimeOut_Value
	Requirements
	Format
	Parameters
	Restrictions

	Chapter 9. APPC/MVS Advanced TP Callable Services
	Advanced TP Callable Services with Multiple Call Names
	Asynchronous_Manager
	Requirements
	Format
	Parameters
	Restrictions

	Accept_Test
	Requirements
	Format
	Parameters
	Restrictions

	Cleanup_TP
	Requirements
	Format
	Parameters
	Restrictions

	Extract_Information
	Categories of Information
	Scheduling Information
	APPC Conversation Information

	Requirements
	Format
	Parameters
	Characteristics and Restrictions
	Contents of the Extract Buffer
	For Summary Conversation Information (Extract Code X'0000')
	For Specific Conversation Information (Extract Code X'0001')

	Get_Transaction
	Requirements
	Format
	Parameters
	Restrictions

	Register_Test
	Requirements
	Format
	Parameters
	Restrictions

	Reject_Conversation
	Requirements
	Format
	Parameters
	Restrictions

	Return_Transaction
	Requirements
	Format
	Parameters
	Restrictions

	Set_Conversation_Accounting_Information
	Requirements
	Format
	Parameters
	Restrictions

	Unregister_Test
	Requirements
	Format
	Parameters
	Restrictions

	Version_Service
	Example
	Requirements
	Format
	Parameters
	Restrictions

	Chapter 10. API Trace Facility Messages
	Chapter 11. Error_Extract Reason Codes and Messages
	Summary of Error_Extract Reason Codes
	Error_Extract Error Log Information (ASB, ATB7) Messages
	Error_Extract (ATB8) Messages

	Part 4. Appendixes
	Appendix A. Character Sets
	Appendix B. Explanations of Return Codes for CPICommunications Services
	Appendix C. APPC/MVS Conversation State Table
	Explanation of State-Table Abbreviations
	Conversation Characteristics ()
	Return Code Values []
	Data_received and Status_received {, }
	Table Symbols

	How to Use the State Table

	Appendix D. Support for SNA LU 6.2 Verbs and Option Sets
	Mapping APPC/MVS TP Services to LU 6.2 Verbs and CPICommunications
	APPC/MVS Support for LU 6.2 Option Sets
	Flush the LU's Send Buffer (101)
	Get Attributes (102)
	Prepare to Receive (105)
	Receive Immediate (106)
	Sync Point Services (108)
	Get Conversation Type (110)
	Queued Allocation of a Conwinner Session (201)
	Immediate Allocation of a Session (203)
	Conversations between Programs Located at the Same LU (204)
	Session-Level LU-LU Verification (211)
	User ID Verification (212)
	Program Supplied User ID and Password (213)
	User ID Authorization (214)
	Profile Verification and Authorization (215)
	Origin LU Authorization (216)
	Profile Passthrough (217)
	Program-Supplied Profile (218)
	Receive Persistent Verification (220)
	Receive SIGNON/Change Password (222)
	Accounting (243)
	Long Locks (244)
	Test for Request-to-Send Received (245)
	Vote Read-Only Response to a Sync Point Operation (249)
	Extract Transaction and Conversation Identification Information (251)
	CHANGE_SESSION_LIMIT Verb (501)
	Session-Level Mandatory Cryptography (611)

	Appendix E. Previous Versions of APPC/MVS CallableServices
	ATBALLC - Allocate (For MVS/ESA 4.2 and 4.2.2)
	Requirements
	Format
	Parameters
	Restrictions

	ATBALC2 - Allocate (For MVS/ESA 4.3 through OS/390 Release 7)
	Requirements
	Format
	Parameters
	Return Codes
	Restrictions

	ATBCMCTU - Cleanup_TP (Unauthorized, for MVS/ESA 4.2)
	Requirements
	Format
	Parameters
	Restrictions

	ATBGETP - Get_TP_Properties
	Requirements
	Format
	Parameters
	Return Codes
	Restrictions

	Appendix F. Notices
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

